跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 08:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉勇良
研究生(外文):LIU, YUNG-LIANG
論文名稱:生殖研究探討 1.OSR1與SPAK激酶協同地調節小鼠Sertoli cell所支持的小鼠精子細胞生成藉由調控NKCC1離子通道 2.探討第三號誘餌受體(DcR3)對於流產小鼠的治療潛能及分析其相關機轉
論文名稱(外文):Fertility study1.OSR1 and SPAK collaboratively regulate Sertoli cell support of spermatogenesis in mice through modulation of NKCC12.Investigation of the therapeutic potentials of decoy receptor 3 in the abortion-prone mouse model and analysis of its mechanism
指導教授:司徒惠康司徒惠康引用關係
指導教授(外文):SYTWU, HUEY-KANG
口試委員:司徒惠康武國璋何弘能孫光煥顏伶汝王鵬惠詹益新
口試委員(外文):SYTWU, HUEY-KANGWU, GWO-JANGHO, HONG-NERNGSUN, GUANG-HUANYEN, BETTY-LINJUWANG, PENG-HUICHAN, YI-HSIN
口試日期:2016-12-12
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:116
中文關鍵詞:NKCC1離子通道OSR1Sertoli cell-only syndromeSPAK精子生成重複性流產流產小鼠模式第三號誘餌受體蛻膜細胞Th17細胞
外文關鍵詞:NKCC1OSR1Sertoli cell-only syndromeSPAKspermatogenesisRSAabortion-prone modelDcR3decidual cellsTh17 cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:505
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 (OSR1/SPAK)
睪丸內的支持細胞Sertoli cells (SCs)對於男性生殖與精子生成扮演重要的角色。Sertoli-cell-only syndrome (SCOS)在男性不孕症中,並非少見。其睪丸切片在曲細精管主要剩下Sertoli cells而無生殖細胞。其病理機轉至今仍不清楚。Oxidative stress-responsive kinase-1 (OSR1) and STE20 (sterile 20) and SPS1-related proline/alanine-rich kinase (SPAK)是屬於STE20 superfamily of MAPK-like 蛋白激酶且在睪丸有高的表現量。我們藉由小鼠模式來分析OSR1與SPAK在男性的角色。在分析公小鼠的生殖力中,我們發現全身性的SPAK基因剔除與Sertoli cell 專一性OSR1基因剔除的公小鼠有正常的生殖力。但全身性的OSR1基因異合子(OSR1+/–)的公小鼠有生殖力下降的現象。此外我們發現在SPAK基因剔除的睪丸組織中,磷酸化的OSR1蛋白表現量上升,說明OSR1與SPAK在男性生殖中有其互補與代償的角色。為證實此代償效應,我們藉由Sertoli cell 專一的OSR1基因剔除的小鼠與全身SPAK基因剔除的小鼠配種以製作Sertoli cell 同時失去OSR1與SPAK基因的小鼠(雙基因剔除小鼠,DKO mice)。這些成熟的公小鼠無生殖能力且睪丸切片顯示曲細精管內主要剩下Sertoli cells而無生殖細胞,表徵如同Sertoli-cell-only syndrome。藉由分析DKO小鼠的第一波精子生成發現:精子細胞生成出現問題同時合併生殖細胞凋亡的現象。另外在DKO小鼠的睪丸組織發現NKCC1的總量與磷酸化表現有下降的現象。這些結果說明在Sertoli cells中,OSR1與SPAK 可協同地藉由活化NKCC1的功能來調控精子的生成。

中文摘要 (DcR3)
T細胞對於維持免疫系統的恆定扮演重要角色。在重複性流產的病人周邊血液與蛻膜組織可發現有較高Th17細胞表現量,說明Th17細胞對此疾病有一定的病生理角色。我們的研究是探討第三號誘餌受體對重複性流產小鼠的治療調控角色。藉由水動力學的方式,給予懷孕的流產小鼠靜脈注射第三號誘餌受體的質體,我們分析第三號誘餌受體對於治療重複性流產的角色。我們發現:第三號誘餌受體可減少流產小鼠的流產率。在治療的組別中,其子宮Th17細胞的表現量也有下降的現象。此實驗主要流產小鼠的治療為主,能否應用在重複性流產的病人需要更多的研究。我們希望未來有機會能應用在重複性流產病人的治療。



ABSTRACT (OSR1/SPAK)

Somatic Sertoli cells (SCs) play a key role in orchestrating the development of sperm cells through the stages of spermatogenesis and their function is important for male fertility. Sertoli-cell-only syndrome (SCOS), is not an uncommon disorder in male infertility, characterized with a condition of the testes in which only Sertoli cells line the seminiferous tubules. The etiology and mechanism of this syndrome are currently unknown. Oxidative stress-responsive kinase-1 (OSR1) and STE20 (sterile 20) and SPS1-related proline/alanine-rich kinase (SPAK), belong to STE20 superfamily of MAPK-like protein kinases, and express in testis tissues. We investigated the roles of OSR1 and SPAK in mouse models of male fertility. Male global SPAK knockout (SPAK–/–) and Sertoli cell-specific OSR1 gene knockout (SC-OSR1–/–) mice are fertile. But male global OSR1+/– gene mutations cause subfertility. Our data revealed that increased the phosphorylated (p) OSR1 expression in SPAK–/– testis tissue, suggested the compensatory effects of OSR1 and SPAK in male fertility. To dissect this effect, we generated SC-OSR1–/– and SPAK–/– double knockout (DKO) male mice. These adult male mice are infertile with defective spermatogenesis, presenting a SC-only-like syndrome. Disrupted meiotic progression and increased germ cell apoptosis occurred in the first wave of spermatogenesis. Impaired NKCC1 activity was noted. These results indicate that OSR1 and SPAK cooperatively regulate an NKCC1-dependent spermatogenesis a SC-restricted manner.

ABSTRACT (DcR3)
T cells play a central role in immune system, including immunoregulation and immunostimulation. The peripheral blood and decidua in unexplained recurrent spontaneous abortion patients revealed increased prevalence of T helper 17 (Th17) cells, suggesting an important role of The 17 cells in the pathogenesis of RSA. In this study, we investigated the modulatory effects of decoy receptor 3 (DcR3) in recurrent spontaneous abortion (RSA). We used hydrodynamic-based intravenous (IV) administration of DcR3 plasmid into female CBA/J mated male DBA/2 as the abortion-prone model to elucidate the physiological role of DcR3 on RSA. Our results revealed that DcR3 significantly reduced abortion rate in pregnant female CBA/J mice on d13.5. The expression of IL-17-producing CD4 T cells was decreased in the uterus of DcR3-treated mice. Our data suggested that DcR3 has potential as a suppressor of uterus inflammation in the abortion-prone model, which may be attributed to either direct inhibition of uterus inflammation or suppression of abortive Th17 cells. This study is mainly performed in the abortion-prone model. Application of DcR3 in unexplained recurrent spontaneous abortion patients needs further studies. This study provides a therapeutic effect of DcR3 in the abortion-prone model, suggesting its potential for treating women RSA.


CONTENTS
CONTENTS III
LIST OF TABLES IX
LIST OF FIGURES X
中文摘要 (OSR1/SPAK) XII
ABSTRACT (OSR1/SPAK) XIV
中文摘要 (DcR3) XVI
ABSTRACT (DcR3) XVII
第一篇 OSR1 and SPAK collaboratively regulate Sertoli cell support of spermatogenesis in mice through modulation of NKCC1 1
第一章 INTRODUCTION (OSR1/SPAK) 2
Introduction to infertility 2
Sertoli cells and Sertoli cell-only syndrome 2
OSR1 and SPAK 3
NKCC1 and fertility 4
Germinal centre kinase-3 and fertility 5
Hypothesis 5
第二章 SPECIFIC AIMS (OSR1/SPAK) 6
In global OSR1+/- mice 6
Generation of Sertoli cell (SC)-specific OSR1 KO mice 6
Generation of SC-OSR1–/– and SPAK–/– double knockout (DKO) mice 6
第三章 MATERIALS AND METHODS (OSR1/SPAK) 7
Mice 7
Generation of tissue-specific KO mice and genotyping 8
Fertility evaluation 9
Tissue histology 9
Serum testosterone assessment 9
Semen analysis 10
Acrosome reaction assessment 11
In vitro fertilization (IVF) assessement 12
An NKCC inhibitor (Furosemide) on fertilization 13
RT-PCR and quantitative RT-PCR 14
Immunofluorescence stain and western blot 14
TUNEL assay 17
Statistics 17
第四章 RESULTS (OSR1/SPAK) 18
Genotyping of OSR1+/– and SPAK–/– mice 18
Expression of OSR1 and SPAK expression on mouse Sertoli TM4 cell lines, mouse testis tissues and Sertoli cells 18
Fertility assessment in global OSR1+/– and SPAK–/– mice 19
Gross evaluation and histology analysis of reproductive tissues in global OSR1+/– mice 20
Semen analysis in global OSR1+/– mice 21
Effect of OSR1 haploinsufficiency on sperm function focusing on acrosome reaction and in vitro fertilization 22
Abundance of OSR1, SPAK, and NKCC1 and their phosphorylation status in testicular tissues and mature spermatozoa 23
The effect of furosemide, an NKCC inhibitor on fertilization 24
Failed generation of germ cell-specific OSR1 KO mice 25
Generation of Sertoli cell-specific OSR1 KO mice and fertility assessment 26
Increased p-OSR1 expression in the absence of SPAK in testis tissues 28
Generation of SC-OSR1–/– and SPAK–/– DKO mice and validation of their genotypes 29
Fertility and phenotype evaluation in DKO mice 31
Loss of OSR1 and SPAK in Sertoli cells of DKO mice manifested as a Sertoli cell-only appearance 31
Analysis of the first wave spermatogenesis in DKO mice 33
Assessment apoptosis events in the first wave spermatogenesis of DKO mice 34
Analysis of total and phosphorylated NKCC1 abundance in testicular tissues of DKO mice 34
第五章 DISCUSSION (OSR1/SPAK) 37
第六章 CONCLUSION (OSR1/SPAK) 48
第二篇 Investigation of the therapeutic potentials of decoy receptor 3 in the abortion-prone mouse model and analysis of its mechanism 49
第一章 INTRODUCTION (DcR3) 50
Pregnancy and immune tolerance 50
Th 17 cells 50
DcR3 51
Hypothesis 52
第二章 SPECIFIC AIMS (DcR3) 53
Verification of DcR3 plasmid 53
Generation of the abortion-prone model 53
Treatment of the abortion-prone model by DcR3 plasmid 53
Dissection of the mechanism after treatment 53
第三章 MATERIALS AND METHODS (DcR3) 54
Mice 54
Abortion rate 54
DcR3 plasmid 55
Western blot 55
Hydrodynamics-based gene delivery 55
Preparation of splenocytes 56
Isolation of uterus cell suspensions 57
Antibodies and flow cytometry 57
Quantitative RT-PCR 58
Statistical analysis 59
第四章 RESULTS (DcR3) 60
Validation of DcR3 protein in vitro 60
Serum level of DCR3 protein in treated female CBA/J mice. 60
Female CBA/J mated with male DBA/2 as an abortion-prone model 60
Delivery of DcR3 plasmid reduced abortion rates in the abortion-prone model 61
Administration of DcR3 plasmid decreased Th17 cells in uteri 62
第五章 DISCUSSION (DcR3) 63
第六章 CONCLUSION (DcR3) 65
REFERENCES 66



LIST OF TABLES
Table 1 Primers used for SYBG-based qPCR assays. 77



LIST OF FIGURES
Figure 1 Genotyping of OSR1+/– and SPAK–/– mice. 78
Figure 2 OSR1 and SPAK expression on Sertoli TM4 cell lines. 79
Figure 3 OSR1 and SPAK expression on testis tissues and Sertoli cells. 80
Figure 4 Fertility analysis. 81
Figure 5 Evaluation and histology analysis of reproductive tissues in global OSR1+/– mice. 82
Figure 6 Semen analysis of global OSR1+/– mice. 84
Figure 7 Sperm function focusing on acrosome reaction and IVF in global OSR1+/– mice. 86
Figure 8 Abundance of OSR1, SPAK, and NKCC1 and their phosphorylation status in testicular tissues. 88
Figure 9 Abundance of OSR1, SPAK, and NKCC1 and their phosphorylation status in mature spermatozoa. 89
Figure 10 The effect of furosemide, an NKCC inhibitor on fertilization 91
Figure 11 Failed generation of germ cell-specific OSR1KO mice. 92
Figure 12 Generation of Sertoli cell-specific OSR1 KO mice and fertility assessment. 93
Figure 13 Increased p-OSR1 expression in the absence of SPAK in testis tissues of SPAK-null mice. 95
Figure 14 Generation of SC-OSR1–/– and SPAK–/– DKO mice. 96
Figure 15 Validation of genotypes of DKO mice by PCR and RT-qPCR. 97
Figure 16 Validation of OSR1 and SPAK expression in testis tissues of DKO mice by IF staining. 99
Figure 17 Fertility and phenotype evaluation of DKO mice. 101
Figure 18 Loss of OSR1 and SPAK in Sertoli cells of DKO mice manifested as a Sertoli cell-only appearance. 103
Figure 19 Characterization of the first wave spermatogenesis in testicular tissues of DKO mice. 105
Figure 20 Assessment of TUNEL assays in testicular tissues of DKO mice. 107
Figure 21 Total and phosphorylated OSR1, SPAK, and NKCC1 abundance in testis tissues of DKO mice. 108
Figure 22 Total and phosphorylated NKCC1 abundance in testis tissues of DKO mice. 110
Figure A1 Overexpression of DcR3 by TE671 cells in vitro. 112
Figure A2 Serum level of DCR3 protein in treated female CBA/J mice. 113
Figure A3 Establishment of the abortion-prone model. 114
Figure A4 Delivery of DcR3 plasmid reduced abortion rates in abortion-prone models. 115
Figure A5 Administration of DcR3 plasmid decreased Th17 cells at the maternal-fetal interface. 117


1.Why Has Taiwan's Birthrate Dropped So Low? 2009. (Accessed Dec. 28th, 2011, at http://www.time.com/time/world/article/0,8599,1945937,00.html.)
2.Kamel RM. Management of the infertile couple: an evidence-based protocol. Reprod Biol Endocrinol 2010;8:21.
3.Pavone ME, Hirshfeld-Cytron JE, Kazer RR. The progressive simplification of the infertility evaluation. Obstet Gynecol Surv 2011;66:31-41.
4.Templeton A, Fraser C, Thompson B. The epidemiology of infertility in Aberdeen. Bmj 1990;301:148-52.
5.Hildebrand MS, Avenarius MR, Fellous M, et al. Genetic male infertility and mutation of CATSPER ion channels. Eur J Hum Genet 2010;18:1178-84.
6.Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab 2011;25:271-85.
7.Svingen T, Koopman P. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev 2013;27:2409-26.
8.Anniballo R, Ubaldi F, Cobellis L, et al. Criteria predicting the absence of spermatozoa in the Sertoli cell-only syndrome can be used to improve success rates of sperm retrieval. Hum Reprod 2000;15:2269-77.
9.McLachlan RI, Rajpert-De Meyts E, Hoei-Hansen CE, de Kretser DM, Skakkebaek NE. Histological evaluation of the human testis--approaches to optimizing the clinical value of the assessment: mini review. Hum Reprod 2007;22:2-16.
10.Ushiro H, Tsutsumi T, Suzuki K, Kayahara T, Nakano K. Molecular cloning and characterization of a novel Ste20-related protein kinase enriched in neurons and transporting epithelia. Arch Biochem Biophys 1998;355:233-40.
11.Tamari M, Daigo Y, Nakamura Y. Isolation and characterization of a novel serine threonine kinase gene on chromosome 3p22-21.3. J Hum Genet 1999;44:116-20.
12.Piechotta K, Lu J, Delpire E. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem 2002;277:50812-9.
13.Gimenez I, Forbush B. Regulatory phosphorylation sites in the NH2 terminus of the renal Na-K-Cl cotransporter (NKCC2). Am J Physiol Renal Physiol 2005;289:F1341-5.
14.Lytle C, McManus T. Coordinate modulation of Na-K-2Cl cotransport and K-Cl cotransport by cell volume and chloride. Am J Physiol Cell Physiol 2002;283:C1422-31.
15.Yang SS, Lo YF, Wu CC, et al. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol 2010;21:1868-77.
16.Lin SH, Yu IS, Jiang ST, et al. Impaired phosphorylation of Na+-K+-2Cl- cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Proc Natl Acad Sci U S A 2011.
17.Rafiqi FH, Zuber AM, Glover M, et al. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med 2010;2:63-75.
18.Meyer JW, Flagella M, Sutliff RL, et al. Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na(+)-K(+)-2Cl(-) cotransporter. Am J Physiol Heart Circ Physiol 2002;283:H1846-55.
19.Garg P, Martin CF, Elms SC, et al. Effect of the Na-K-2Cl cotransporter NKCC1 on systemic blood pressure and smooth muscle tone. Am J Physiol Heart Circ Physiol 2007;292:H2100-5.
20.Wall SM, Knepper MA, Hassell KA, et al. Hypotension in NKCC1 null mice: role of the kidneys. Am J Physiol Renal Physiol 2006;290:F409-16.
21.Kim SM, Eisner C, Faulhaber-Walter R, et al. Salt sensitivity of blood pressure in NKCC1-deficient mice. Am J Physiol Renal Physiol 2008;295:F1230-8.
22.Pace AJ, Lee E, Athirakul K, Coffman TM, O'Brien DA, Koller BH. Failure of spermatogenesis in mouse lines deficient in the Na(+)-K(+)-2Cl(-) cotransporter. J Clin Invest 2000;105:441-50.
23.Wertheimer EV, Salicioni AM, Liu W, et al. Chloride Is essential for capacitation and for the capacitation-associated increase in tyrosine phosphorylation. J Biol Chem 2008;283:35539-50.
24.Denton J, Nehrke K, Yin X, Morrison R, Strange K. GCK-3, a newly identified Ste20 kinase, binds to and regulates the activity of a cell cycle-dependent ClC anion channel. J Gen Physiol 2005;125:113-25.
25.Hisamoto N, Moriguchi T, Urushiyama S, Mitani S, Shibuya H, Matsumoto K. Caenorhabditis elegans WNK-STE20 pathway regulates tube formation by modulating ClC channel activity. EMBO Rep 2008;9:70-5.
26.Gallardo T, Shirley L, John GB, Castrillon DH. Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 2007;45:413-7.
27.Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-fluorescent Cre reporter mouse. Genesis 2007;45:593-605.
28.Holdcraft RW, Braun RE. Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 2004;131:459-67.
29.Yeh LT, Miaw SC, Lin MH, et al. Different Modulation of Ptpn22 in Effector and Regulatory T Cells Leads to Attenuation of Autoimmune Diabetes in Transgenic Nonobese Diabetic Mice. Journal of immunology 2013.
30.Lecureuil C, Fontaine I, Crepieux P, Guillou F. Sertoli and granulosa cell-specific Cre recombinase activity in transgenic mice. Genesis 2002;33:114-8.
31.Simanainen U, McNamara K, Davey RA, Zajac JD, Handelsman DJ. Severe subfertility in mice with androgen receptor inactivation in sex accessory organs but not in testis. Endocrinology 2008;149:3330-8.
32.World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.
33.Kawai Y, Hata T, Suzuki O, Matsuda J. The relationship between sperm morphology and in vitro fertilization ability in mice. J Reprod Dev 2006;52:561-8.
34.Ward MA. Intracytoplasmic sperm injection effects in infertile azh mutant mice. Biol Reprod 2005;73:193-200.
35.Ganaiem M, AbuElhija M, Lunenfeld E, et al. Effect of interleukin-1 receptor antagonist gene deletion on male mouse fertility. Endocrinology 2009;150:295-303.
36.Uchida K, Suzuki K, Iwamoto M, et al. Decreased tyrosine phosphorylation of nephrin in rat and human nephrosis. Kidney Int 2008;73:926-32.
37.Moriguchi T, Urushiyama S, Hisamoto N, et al. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem 2005;280:42685-93.
38.Yang SS, Morimoto T, Rai T, et al. Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab 2007;5:331-44.
39.Ohta A, Rai T, Yui N, et al. Targeted disruption of the Wnk4 gene decreases phosphorylation of Na-Cl cotransporter, increases Na excretion and lowers blood pressure. Hum Mol Genet 2009;18:3978-86.
40.Lytle C, Xu JC, Biemesderfer D, Forbush B, 3rd. Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am J Physiol 1995;269:C1496-505.
41.Tanwar PS, Zhang L, Teixeira JM. Adenomatous polyposis coli (APC) is essential for maintaining the integrity of the seminiferous epithelium. Mol Endocrinol 2011;25:1725-39.
42.Katsuki T, Hara T, Ueda K, Tanaka J, Ohama K. Prediction of outcomes of assisted reproduction treatment using the calcium ionophore-induced acrosome reaction. Hum Reprod 2005;20:469-75.
43.Hebert SC, Mount DB, Gamba G. Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family. Pflugers Arch 2004;447:580-93.
44.McCormick JA, Ellison DH. The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev 2011;91:177-219.
45.Holstein AF, Schulze W, Davidoff M. Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol 2003;1:107.
46.Geng Y, Hoke A, Delpire E. The Ste20 kinases Ste20-related proline-alanine-rich kinase and oxidative-stress response 1 regulate NKCC1 function in sensory neurons. J Biol Chem 2009;284:14020-8.
47.Ito E, Toki T, Ishihara H, et al. Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature 1993;362:466-8.
48.Onodera K, Yomogida K, Suwabe N, et al. Conserved structure, regulatory elements, and transcriptional regulation from the GATA-1 gene testis promoter. Journal of biochemistry 1997;121:251-63.
49.Yomogida K, Ohtani H, Harigae H, et al. Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development 1994;120:1759-66.
50.Maclean JA, 2nd, Chen MA, Wayne CM, et al. Rhox: a new homeobox gene cluster. Cell 2005;120:369-82.
51.Lindsey JS, Wilkinson MF. Pem: a testosterone- and LH-regulated homeobox gene expressed in mouse Sertoli cells and epididymis. Dev Biol 1996;179:471-84.
52.Bolcun-Filas E, Bannister LA, Barash A, et al. A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Development 2011;138:3319-30.
53.Toscani A, Mettus RV, Coupland R, et al. Arrest of spermatogenesis and defective breast development in mice lacking A-myb. Nature 1997;386:713-7.
54.Latham KE, Litvin J, Orth JM, Patel B, Mettus R, Reddy EP. Temporal patterns of A-myb and B-myb gene expression during testis development. Oncogene 1996;13:1161-8.
55.Mettus RV, Litvin J, Wali A, et al. Murine A-myb: evidence for differential splicing and tissue-specific expression. Oncogene 1994;9:3077-86.
56.Kimura M, Ishida K, Kashiwabara S, Baba T. Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells. Biol Reprod 2009;80:545-54.
57.Guillermet-Guibert J, Smith LB, Halet G, et al. Novel Role for p110beta PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells. PLoS Genet 2015;11:e1005304.
58.Borg CL, Wolski KM, Gibbs GM, O'Bryan MK. Phenotyping male infertility in the mouse: how to get the most out of a 'non-performer'. Hum Reprod Update 2010;16:205-24.
59.Delpire E, Gagnon KB. SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem J 2008;409:321-31.
60.Richardson C, Alessi DR. The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 2008;121:3293-304.
61.Leiserson WM, Harkins EW, Keshishian H. Fray, a Drosophila serine/threonine kinase homologous to mammalian PASK, is required for axonal ensheathment. Neuron 2000;28:793-806.
62.Geng Y, Byun N, Delpire E. Behavioral analysis of Ste20 kinase SPAK knockout mice. Behav Brain Res 2010;208:377-82.
63.Castaneda-Bueno M, Cervantes-Perez LG, Vazquez N, et al. Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci U S A 2012;109:7929-34.
64.Sengupta S, Lorente-Rodriguez A, Earnest S, et al. Regulation of OSR1 and the sodium, potassium, two chloride cotransporter by convergent signals. Proc Natl Acad Sci U S A 2013;110:18826-31.
65.Darman RB, Forbush B. A regulatory locus of phosphorylation in the N terminus of the Na-K-Cl cotransporter, NKCC1. J Biol Chem 2002;277:37542-50.
66.Gimenez I, Forbush B. Regulatory phosphorylation sites in the NH2 terminus of the renal Na-K-Cl cotransporter (NKCC2). Am J Physiol Renal Physiol 2005;289:F1341-5.
67.Russell LD, de Franca LR. Building a testis. Tissue & cell 1995;27:129-47.
68.Rato L, Socorro S, Cavaco JE, Oliveira PF. Tubular fluid secretion in the seminiferous epithelium: ion transporters and aquaporins in Sertoli cells. J Membr Biol 2010;236:215-24.
69.Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol 2002;2:656-63.
70.Makrigiannakis A, Zoumakis E, Kalantaridou S, et al. Corticotropin-releasing hormone promotes blastocyst implantation and early maternal tolerance. Nature immunology 2001;2:1018-24.
71.Blois SM, Ilarregui JM, Tometten M, et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nature medicine 2007;13:1450-7.
72.Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998;281:1191-3.
73.Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science 2000;287:498-501.
74.Piccinni MP, Beloni L, Livi C, Maggi E, Scarselli G, Romagnani S. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nature medicine 1998;4:1020-4.
75.Mjosberg J, Berg G, Jenmalm MC, Ernerudh J. FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol Reprod 2010;82:698-705.
76.Saito S, Sakai M, Sasaki Y, Tanebe K, Tsuda H, Michimata T. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clinical and experimental immunology 1999;117:550-5.
77.Lin H, Mosmann TR, Guilbert L, Tuntipopipat S, Wegmann TG. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. Journal of immunology 1993;151:4562-73.
78.Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 2004;5:266-71.
79.Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 2004;112:38-43.
80.Tilburgs T, Roelen DL, van der Mast BJ, et al. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. Journal of immunology 2008;180:5737-45.
81.Fu B, Li X, Sun R, et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface. Proceedings of the National Academy of Sciences of the United States of America 2013;110:E231-40.
82.Zhu XY, Zhou YH, Wang MY, Jin LP, Yuan MM, Li DJ. Blockade of CD86 signaling facilitates a Th2 bias at the maternal-fetal interface and expands peripheral CD4+CD25+ regulatory T cells to rescue abortion-prone fetuses. Biol Reprod 2005;72:338-45.
83.Poehlmann TG, Busch S, Mussil B, et al. The possible role of the Jak/STAT pathway in lymphocytes at the fetomaternal interface. Chem Immunol Allergy 2005;89:26-35.
84.Ayatollahi M, Geramizadeh B, Samsami A. Transforming growth factor beta-1 influence on fetal allografts during pregnancy. Transplantation proceedings 2005;37:4603-4.
85.Guleria I, Khosroshahi A, Ansari MJ, et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. The Journal of experimental medicine 2005;202:231-7.
86.D'Addio F, Riella LV, Mfarrej BG, et al. The link between the PDL1 costimulatory pathway and Th17 in fetomaternal tolerance. Journal of immunology 2011;187:4530-41.
87.Kim YJ, Park SJ, Broxmeyer HE. Phagocytosis, a potential mechanism for myeloid-derived suppressor cell regulation of CD8+ T cell function mediated through programmed cell death-1 and programmed cell death-1 ligand interaction. Journal of immunology 2011;187:2291-301.
88.Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Type 17 T helper cells-origins, features and possible roles in rheumatic disease. Nat Rev Rheumatol 2009;5:325-31.
89.Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med 2009;361:888-98.
90.Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007;8:345-50.
91.Liu YS, Wu L, Tong XH, et al. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2011;65:503-11.
92.Wang WJ, Hao CF, Yi L, et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol 2010;84:164-70.
93.Wang WJ, Hao CF, Qu QL, Wang X, Qiu LH, Lin QD. The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage. Human reproduction 2010;25:2591-6.
94.Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol 2010;63:601-10.
95.Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002;2:420-30.
96.Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998;396:699-703.
97.Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS. A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. The Journal of biological chemistry 1999;274:13733-6.
98.Migone TS, Zhang J, Luo X, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 2002;16:479-92.
99.Wu SF, Liu TM, Lin YC, et al. Immunomodulatory effect of decoy receptor 3 on the differentiation and function of bone marrow-derived dendritic cells in nonobese diabetic mice: from regulatory mechanism to clinical implication. Journal of leukocyte biology 2004;75:293-306.
100.Wang YL, Chou FC, Sung HH, et al. Decoy receptor 3 protects non-obese diabetic mice from autoimmune diabetes by regulating dendritic cell maturation and function. Molecular immunology 2010;47:2552-62.
101.Bai C, Connolly B, Metzker ML, et al. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proceedings of the National Academy of Sciences of the United States of America 2000;97:1230-5.
102.Green DR. Apoptosis. Death deceiver. Nature 1998;396:629-30.
103.Roth W, Isenmann S, Nakamura M, et al. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res 2001;61:2759-65.
104.Sung HH, Juang JH, Lin YC, et al. Transgenic expression of decoy receptor 3 protects islets from spontaneous and chemical-induced autoimmune destruction in nonobese diabetic mice. J Exp Med 2004;199:1143-51.
105.Ka SM, Sytwu HK, Chang DM, Hsieh SL, Tsai PY, Chen A. Decoy receptor 3 ameliorates an autoimmune crescentic glomerulonephritis model in mice. Journal of the American Society of Nephrology : JASN 2007;18:2473-85.
106.Cheng CP, Sytwu HK, Chang DM. Decoy receptor 3 attenuates collagen-induced arthritis by modulating T cell activation and B cell expansion. J Rheumatol 2011;38:2522-35.
107.Zhang J, Salcedo TW, Wan X, et al. Modulation of T-cell responses to alloantigens by TR6/DcR3. J Clin Invest 2001;107:1459-68.
108.Wu Y, Han B, Luo H, et al. DcR3/TR6 effectively prevents islet primary nonfunction after transplantation. Diabetes 2003;52:2279-86.
109.Mueller AM, Pedre X, Killian S, David M, Steinbrecher A. The Decoy Receptor 3 (DcR3, TNFRSF6B) suppresses Th17 immune responses and is abundant in human cerebrospinal fluid. Journal of neuroimmunology 2009;209:57-64.
110.Chen SJ, Wang YL, Kao JH, et al. Decoy receptor 3 ameliorates experimental autoimmune encephalomyelitis by directly counteracting local inflammation and downregulating Th17 cells. Mol Immunol 2009;47:567-74.
111.Chen HF, Chen JS, Shun CT, Tsai YF, Ho HN. Decoy receptor 3 expression during the menstrual cycle and pregnancy, and regulation by sex steroids in endometrial cells in vitro. Human reproduction 2009;24:1350-8.
112.Lin Y, Xu L, Jin H, Zhong Y, Di J, Lin QD. CXCL12 enhances exogenous CD4+CD25+ T cell migration and prevents embryo loss in non-obese diabetic mice. Fertility and sterility 2009;91:2687-96.
113.Zenclussen AC, Gerlof K, Zenclussen ML, et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol 2005;166:811-22.
114.Zenclussen AC, Blois S, Stumpo R, et al. Murine abortion is associated with enhanced interleukin-6 levels at the feto-maternal interface. Cytokine 2003;24:150-60.
115.Wang YL, Chou FC, Sung HH, et al. Decoy receptor 3 protects non-obese diabetic mice from autoimmune diabetes by regulating dendritic cell maturation and function. Mol Immunol 2010;47:2552-62.
116.Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999;6:1258-66.
117.Blois S, Tometten M, Kandil J, et al. Intercellular adhesion molecule-1/LFA-1 cross talk is a proximate mediator capable of disrupting immune integration and tolerance mechanism at the feto-maternal interface in murine pregnancies. Journal of immunology 2005;174:1820-9.
118.Hung JT, Liao JH, Lin YC, et al. Immunopathogenic role of TH1 cells in autoimmune diabetes: evidence from a T1 and T2 doubly transgenic non-obese diabetic mouse model. J Autoimmun 2005;25:181-92.
119.Lin MH, Chou FC, Yeh LT, et al. B lymphocyte-induced maturation protein 1 (BLIMP-1) attenuates autoimmune diabetes in NOD mice by suppressing Th1 and Th17 cells. Diabetologia 2013;56:136-46.
120.Zhao A, Xiong M, Zhang Y, et al. Adoptive transfer of mFas ligand into dendritic cells influences the spontaneous resorption rate in the CBA/J x DBA/2 mouse model. Fertil Steril 2010;93:1700-5.
121.Clark DA, Chaouat G, Arck PC, Mittruecker HW, Levy GA. Cytokine-dependent abortion in CBA x DBA/2 mice is mediated by the procoagulant fgl2 prothrombinase [correction of prothombinase]. Journal of immunology 1998;160:545-9.
122.Clark DA, Merali FS, Hoskin DW, et al. Decidua-associated suppressor cells in abortion-prone DBA/2-mated CBA/J mice that release bioactive transforming growth factor beta2-related immunosuppressive molecules express a bone marrow-derived natural suppressor cell marker and gamma delta T-cell receptor. Biol Reprod 1997;56:1351-60.
123.Clark DA, Chaput A, Tutton D. Active suppression of host-vs-graft reaction in pregnant mice. VII. Spontaneous abortion of allogeneic CBA/J x DBA/2 fetuses in the uterus of CBA/J mice correlates with deficient non-T suppressor cell activity. J Immunol 1986;136:1668-75.
124.Jin LP, Li DJ, Zhang JP, et al. Adoptive transfer of paternal antigen-hyporesponsive T cells induces maternal tolerance to the allogeneic fetus in abortion-prone matings. Journal of immunology 2004;173:3612-9.
125.You RI, Chang YC, Chen PM, et al. Apoptosis of dendritic cells induced by decoy receptor 3 (DcR3). Blood 2008;111:1480-8.
126.Bulmer JN, Williams PJ, Lash GE. Immune cells in the placental bed. Int J Dev Biol 2010;54:281-94.
127.Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006;12:1065-74.
128.De Gendt K, Swinnen JV, Saunders PT, et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A 2004;101:1327-32.
129.Lindeboom F, Gillemans N, Karis A, et al. A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in the mouse. Nucleic Acids Res 2003;31:5405-12.
130.Wainwright EN, Jorgensen JS, Kim Y, et al. SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation. Biol Reprod 2013;89:34.
131.Boor P, Konieczny A, Villa L, et al. Complement C5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol 2007;18:1508-15.
132.Chang YF, Lee-Chang JS, Panneerdoss S, MacLean JA, 2nd, Rao MK. Isolation of Sertoli, Leydig, and spermatogenic cells from the mouse testis. BioTechniques 2011;51:341-2, 4.
133.Zhang J, Siew K, Macartney T, O'Shaughnessy KM, Alessi DR. Critical role of the SPAK protein kinase CCT domain in controlling blood pressure. Hum Mol Genet 2015;24:4545-58.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top