[1]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, “Supercapacitor Devices Based on Graphene Materials,” The Journal of Physical Chemistry C, vol. 113, no. 30, 2009, pp. 13103-13107.
[2]Z. Ji, G. Zhu, X. Shen, Hu Zhou, C. Wu and M. Wang, “Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation,” New Journal of Chemistry, vol. 36, 2012, pp. 1774-1780.
[3]蔡定平,奈米檢測技術,新竹,臺灣:國家實驗研究院儀器科技研究中心,2009。
[4]蔡信行、孫光中,奈米科技導論-基本原理及應用,臺北:新文京開發,2004。
[5]郭清癸、黃俊傑、牟中原,「金屬奈米粒子的製造」,物理雙月刊,第二十三卷,第六期,2001,第614頁。[6]王世敏,許祖勛、傅晶,奈米材料原理與製備,臺北:五南圖書,2004。
[7]W. S. Hummers Jr. and R. E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, vol. 80, no. 6, 1958, pp. 1339-1339.
[8]P. G. Gassman, T. J. van Bergen and G. Gruetzmacher, “Use of halogen-sulfide complexes in the synthesis of indoles, oxindoles, and alkylated aromatic amines,” Journal of the American Chemical Society, vol. 95, no. 19, 1973, p. 6508.
[9]P. G. Gassman, T. J. van Bergen,D. P. Gilbert and B. W. Cue Jr., “General method for the synthesis of indoles,” Journal of the American Chemical Society, vol. 96, no. 17, 1974, p.5495.
[10]P. G. Gassman and T. J. van Bergen, “Oxindoles. New, general method of synthesis,” Journal of the American Chemical Society, vol. 96, no. 17, 1974, p. 5508.
[11]P. G. Gassman, T. J. van Bergen and G. Gruetzmacher, “Generation of azasulfonium salts from halogen-sulfide complexes and anilines. Synthesis of indoles, oxindoles, and alkylated aromatic amines bearing cation stabilizing substituents,” Journal of the American Chemical Society, vol. 96, no. 17, 1974, p.5512.
[12]G. Gassman and T. J. van Bergen, “Indoles from anilines: ethyl 2-methylindole-5-carboxylate,” Organic Syntheses, vol. 56, 1977, p.72, vol. 6, 1988, p. 601.
[13]H. Ishikawa; T. Suzuki and Y. Hayashi, “High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-oseltamivir by three &;quot;one-pot&;quot; operations,” Angewandte Chemie International Edition, vol. 48, no. 7, 2009, pp.1304-1307.
[14]T. B. Massalski, Binary alloy phase diagrams, Materials Park, OH: ASM Internation, 1990.
[15]S. H. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,”Science, vol. 287, no. 5460, 2000, pp. 1989-1992.
[16]J. Kim, Y. Lee, and S. Sun, “Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction,” Journal of the American Chemical Society, vol. 132, 2010, pp. 4996-4997.
[17]黃彥傑,鐵鉑–二氧化鋯奈米複合材料合成及特性分析,碩士論文,國立國立臺北科技大學機電整合研究所,臺北,2013。[18]S. Y. Bae, K. H. Shin, J. Y. Jeong and J. G. Kim, “Feasibility of FePt longitudinal recording media for ultrahighdensity recording,” Journal of Applied Physics, vol. 87, no. 9, 2000, p. 6953.
[19]鍾騏任,鐵鉑-二氧化鈦奈米複合材料合成及特性分析,碩士論文,國立國立臺北科技大學機電整合研究所,臺北,2012。[20]B. Rellinghaus, E. Mohn, L. Schultz, T. Gemming, M. Acet, A. Kowalik and B. F. Kock, “On the L10order kinetics in Fe-Pt nanoparticles,” IEEE Transactionson Magnetics, vol. 42, no. 10, 2006, pp.3048-3050.
[21]L. C. Varanda and M. Jafelicci, Jr., “Self-assemble FePt nanocrystals with large coercivity: reduction of the fcc-to-L10ordering temperature,” Journal of the American Chemical Society, vol. 128, no.34, 2006, pp 11062-11066.
[22]L. Y. Lu, D. Wang, X. G. Xu, Q. Zhan and Y. Jiang, “Enhancement of magnetic properties for FePt nanoparticles by aapid annealing in a vacuum,” The Journal of Physical Chemistry C, vol. 113, no.46, 2009, pp 19867-19870.
[23]M. Nakaya, M. Kanehara and T. Teranishi, “One-pot synthesis of large FePt nanoparticles from metal salts and their thermal stability,” Langmuir, vol. 22, no. 8, 2006, pp. 3485-3487.
[24]C. H. Yu, N. Caiulo, C. C. H. Lo, K. Tam and S. C. Tsang, “Synthesis and Fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles,” Advanced Materials, vol. 18, no.17, 2006, pp. 2312-2314.
[25]T. Burkert, O. Eriksson, S. I. Simak, A. V. Ruban, B. Sanyal, L. Nordström, J. M. Wills, “Magnetic anisotropy of L10 FePt and Fe1-xMnxPt,”Physical Review B, vol 71, 2005, p. 134411.
[26]O. Kitakami, S. Okamoto, N. Kikuchi and Y. Shimada, “Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films,” Physical Review B, vol.66, 2002, p. 024413.
[27]J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gyorffy, L. Szunyogh, B. Ginatempo, E. Bruno, “Temperature dependent magnetic anisotropy in metallic magnets from an ab initio electronic structure theory: L10-ordered FePt,” Physical Review Letters, vol. 93, 2004, p. 257204.
[28]S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science, 287, no. 5460, 2000, p.1989.
[29]S. Sun, Eric E, D. Weller and C. B Murray, “Compositionally controlled FePt nanoparticle materials,” IEEE Transactions on Magnetics, vol. 37, no. 4, 2001, p.1239.
[30]S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murrayand Bruce D. Terris, “Controlled synthesis and assembly of FePt nanoparticles,” The Journal of Physical Chemistry B, vol. 107, no.23, 2003, pp. 5419-5425.
[31]K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method”, Nano Letters, vol. 3, no. 12, 2003, p. 1647.
[32]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, 2004, pp. 666 -669.
[33]C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer grapheme,” Science, vol. 321, no. 5887, 2008, pp. 385-388.
[34]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, 2008, p. 1308.
[35]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior thermal conductivity of single-layer grapheme,” Nano Letters, vol. 8, no. 3, 2008, pp. 902-907.
[36]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, “Ultrahigh electron mobility in suspended grapheme,” Solid State Communications, vol. 146, 2008, pp. 315-355.
[37]盧柏諺,利用XAS對電致色變氧化釩/石墨烯薄膜原子與電子結構之研究,碩士論文,國立國立臺北科技大學製造科技研究所,臺北,2014。[38]B. C. Brodie, “On the atomic weight of graphite,” The Royal Society, vol. 149, no. 1859, pp. 249-259.
[39]W. S. Hummers, Jr., R. E. Offeman, “Preparation of graphite oxide,” Journal of the American Chemical Society, vol. 80, no. 6, 1958, p. 1339.
[40]R. Muszynski, B. Seger, and P. V. Kamat, “Decorating graphene sheets with gold nanoparticles,” The Journal of Physical Chemistry C, vol. 112, no. 14, 2008, pp. 5268-5266.
[41]K. Vinodgopal, B. Neppolian, I. V. Lightcap, F. Grieser, M. Ashokkumar and P. V. Kamat, “Sonolytic design of graphene-Au nanocomposites. simultaneous and sequential reduction of graphene oxide and Au(III),”The Journal of Physical Chemistry Letters, vol. 1, no. 13, 2010, pp. 1987-1993.
[42]Y. Ye, Y. Dai, L. Dai, Z. Shi, N. Liu, F. Wang, L. Fu, R. Peng, X. Wen, Z. Chen, Z. Liu, and G. Qin, “High-performance single CdS nanowire (nanobelt) schottky junction solar cells with Au/graphene Schottky electrodes,” ACS Applied Materials &; Interfaces, vol. 2, no. 12, 2010, pp. 3406-3410.
[43]S. Lee, M. H. Lee, H. J. Shin and D. Choi, “Control of density and LSPR of Au nanoparticles on grapheme,” Nanotechnology, vol. 24, no.27, 2013, pp. 275702(1) - 275702(7).
[44]T. Jian, L. A. Ping, L. P. Gang, S. J. Qin and T. W. Hua, “Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface eself-assembling,” Acta Physica Sinica, vol. 63, no. 10, 2014, pp. 107801(1)-107801(7).
[45]Y. Liu, H. Yu, H. Wang, S. Chen and X. Quan, “Efficient H2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2,” Materials Research Bulletin, vol. 59, 2014, pp.111-116.
[46]S. J. Guo and S. Sun, “FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction,” Journal of the American Chemical Society, vol. 134, no.5, 2012, pp. 2492-2495.
[47]G. Wei, Y. Zhang, S. Steckbeck, Z. Su and Z. Li, “Biomimetic graphene–FePt nanohybrids with high solubility, ferromagnetism, fluorescence, and enhanced electrocatalytic activity,” Journal of Materials Chemistry, vol. 22, 2012. pp. 17190-17195.
[48]D. Chen, X. Zhao, S. S. Chen, H. F. Li, X. N. Fu, Q. Z. Wu, S. P. Li, Y. Li, B. L. Su and R. S. Ruoff, “One-pot fabrication of FePt/reduced graphene oxide composites as highly active and stable electrocatalysts for the oxygen reduction reaction,” Carbon, vol. 68, 2014, pp. 755-762.
[49]J. Guo, Y. Sun, X. Zhang, L. Tang and H. Liu, “FePt nanoalloys anchored reduced graphene oxide as high-performance electrocatalysts for formic acid and methanol oxidation,” Journal of Alloys and Compounds, vol. 604, 2014, pp. 286-291.
[50]J. C. Yang, W. Zhang, “Indicator-free impedimetric detection of BCR/ABL fusion gene based on ordered FePt nanoparticle-decorated electrochemically reduced graphene oxide,” Journal of Solid State Electrochemistry, vol. 18, no. 10, 2014, pp. 2863-2868.
[51]X. Hu, V. Tzitzios, D. Sellmyer and G. Hadjipanayis, “Facile synthesis of L10 FePt/reduced-graphene oxide nanocomposites,” APS March Meeting 2015, San Antonio, Texas, 2015, vol. 60, no. 1.
[52]張浩恩,商用鉑碳催化劑特性鑑定分析,碩士論文,元智大學先進能源研究所,桃園,2011。[53]W. Zhang and Y. Su, “Development of DNA monitoring platform based on poly(xanthurenic acid) functionalized FePt/reduced graphene oxide,” Journal of Solid State Electrochemistry, vol. 19, no. 5, 2015, pp. 1285-1291.
[54]K. Krishnamoorthy, G. S. Kim, S. J. Kim, “Graphene nanosheets:Ultrasound assisted synthesisand characterization,” Ultrasonics Sonochemistry, vol. 20, no. 2, 2013, pp. 644-649.
[55]J. F. Shackelford,材料科學(蔡希杰譯),臺北:臺灣培生教育出版:偉明圖書,2008,第109頁、書附光碟。
[56]周景泰,鐵鉑–氧化鋅奈米結構合成及自組裝特性,碩士論文,國立國立臺北科技大學製造科技研究所,臺北,2011。[57]汪建民,材料分析,臺北:民全書局,1998,第215、501-502、516、659、660、662、668頁。
[58]楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,第二十八卷,第四期,2006,第692頁。[59]楊志信,「一致磁化轉動模型之磁化曲線特性」,中華民國磁性技術協會會刊,第二十八期,2001,第27頁。
[60]I. D. Mayergoyz, Mathematical Models of Hysteresis, New York: Springer-verlag, 1991.
[61]G. Bertotti, Hysteresis in Magnetism, New York: Academic Press, 1998.
[62]V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield and J. C. Bischof,“In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology, vol. 16, no. 8, 2005, 1221-1233.
[63]M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang and N. Gu, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field,” Journal of Magnetism and Magnetic Materials, vol 268, no. 1-2, 2004, pp.33-39.
[64]張富昌,電化學分析儀器,台北:徐氏基金會,1985,第111頁。
[65]K. Krishnamoorthy, M. Veerapandian, K. Yun and S. J. Kim, “The chemical and structural analysis of graphene oxide with different degrees of oxidation,” Carbon, vol. 53, 2013, pp. 38-49.
[66]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and Rodney S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, 2007, pp. 1558-1565.
[67]V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, “High-throughput solution process of large-scale graphene”, Nature Nanotechnology, vol. 4, 2009, pp. 25.
[68]M. Veerapandian, M. H. Lee, K. Krishnamoorthy and K. Yun, “Synthesis, characterization and electrochemical properties of functionalized graphene oxide,” Carbon, vol. 50, 2012, pp. 4228-4238.
[69]V. Gunasekaran, K. Krishnamoorthy, R. Mohan and S. J. Kim, “An investigation of the electrical transport properties of graphene-oxide thin films,” Materials Chemistry and Physics, vol. 132, 2012, pp. 29-33.
[70] 孔祥文,有機化學,北京:化學工業出版社,2010。
[71]K. Krishnamoorthy, R. Mohan and S. J. Kim, “Graphene oxide as a photocatalytic material,” Applied Physics Letters, vol. 98, no. 24, 2011, p. 244101.
[72]H. Kim, H. D. Lim, S. W. Kim, J. Hong, D. H. Seo, D. Kim, S. Jeon and S. Park, “Scalable functionalzed graphene nano-platelets as tunable cathodes for high-performance lithium rechargeable batteries,” Scientific Reports, vol. 3, 2013, p. 1506.
[73]L. Wei, F. Wu, D. Shi, C. Hu, X. Li, W. Yuan, J. Wang, J. Zhao, H. Geng, H. Wei, Y. Wang, N. Hu and Y. Zhang, “Spaontaneous intercalation of long-chainalkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene,” Scientific Reports, vol. 3, 2013, p. 2636.
[74]K. Tada, J. Haruyama, H. X. Yang, M. Chshiev, T. Matsui, and H. Fukuyama, “Graphene magnet realized by hydrogenated graphene nanopore arrays,” Applied Physics Letters, vol. 99, 2011, pp.183111(1)-183111(3).
[75]S. H. Huh, Physics and Applications of Graphene-Experiments, Rijeka, Croatia: InTech, 2011, pp. 74-90.
[76]X. Li, L. An, X. Wang, F. Li, R. Zou and D. Xia, “Supported sub-5nm Pt–Fe intermetallic compounds for electrocatalyticapplication,” Journal of Materials Chemistry, vol. 22, 2012, pp. 6047-6052.
[77]K. Krishnamoorthy, M. Veerapandian, R. Mohan and S. J. Kim, “Investigation of Raman and photoluminescence studies of reduced grapheme oxide sheets,” Applied Physics A, vol. 106, no. 3, 2012, pp. 501-506.
[78]J. A. Christodoulides, M. J. Bonder, Y. Huang, Y. Zhang, S. Stoyanov, and G. C. Hadjipanayis, “Intrinsic and hysteresis properties of FePt nanoparticles,” Physical Review B, vol. 68, 2003, p. 054428.
[79]M. Wang, L. D. Duong, J. S. Oh, N. T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee and J. D. Nam, “Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD),”ACS Applied Materials &; Interfaces, vol. 6, no. 3, 2014, pp. 1747-1753.
[80]C. M. Chen, J. Q. Huang, Q. Zhang, W. Z. Gong, Q. H. Yang, M. Z. Wang and Y. G. Yang, “Annealing a graphene oxide film to produce a free standing high conductive graphene film,” Carbon, vol. 50, no. 2, 2012, pp. 659-667.
[81]V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, “High-throughput solution processing of large-scale graphene”, Nature Nanotechnology, vol. 4, 2009, pp. 25-29.
[82]K. Krishnamoorthy, M. Veerapandian, L. H. Zhang, K. S. Yun and S. J. Kim, “Antibacterial efficiency of graphene nanosheeta against pathogenic bacteria via lipid peroxidation,” The Journal of Physical Chemistry C, vol. 116, no. 32, 2012, pp. 17280-17287.
[83]S. Mikhailov, Physics and Applications of Graphene - Experiments, Rijeka, Croatia: InTech, 2011, pp. 83-86.
[84]P. Guo, H. Song and X. Chen, “Electrochemical performance of graphene nanosheets as anode materialfor lithium-ion batteries,” Electrochemistry Communications, vol. 11, no. 6, 2009, p1323.
[85]P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang and H. Wang, “Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries,” Electrochimica Acta, vol. 55, no. 12, pp. 3909-3914.
[86]Y. K. Takahashi, T. Ohkubo, M. Ohnuma and K. Hono, “Size effect on the ordering of FePt granular films,” Journal of Applied Physics, vol. 93, no. 10, 2003, pp. 7166-7168.
[87]Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo and K. Hono, “Size dependence of ordering in FePt nanoparticles,” Journal of Applied Physics, vol. 95, no. 5, 2004, pp. 2690-2696.
[88]H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.P. Schönherr, and K. H. Ploog, “Room-Temperature Spin Injection from Fe into GaAs,” Physical Review Letters, vol. 87, no. 1, 2001, pp. 016601(1)-016601(4).
[89]A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide,” Nature Chemistry, vol. 2, 2010, pp.581–587.
[90]D. E. Sayers, E. A. Stern, and F. W. Lytle, “New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray—absorption fine structure,” Physical Review Letters, Vol. 27, 1971, p. 1024.
[91]X. Wanga, H. Gub and Z. Yang, “The heating effect of magnetic fluids in an alternating magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 293, no. 1, 2005, pp. 334-340.
[92]T. Hosono, H. Takahashi, A. Fujita, R. J. Joseyphus, K. Tohji and B. Jeyadevan, “Synthesis of magnetite nanoparticles for AC magnetic heating,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 19, 2009,pp. 3019-3023.
[93]T. Kikuchi, R. Kasuya, S. Endo, A. Nakamura, T. Takai, N. M. Nolte, K. Tohji and J. Balachandran, “Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 10, 2011, pp. 1216-1222.
[94]M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang and N. Gu, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 268, no. 1-2, 2004,pp. 33-39.
[95]R. Hiergeist, W. Andrak, N. Buske, R. Hergt, I. Hilger, U. Richter and W. Kaiser, “Application of magnetite ferrofluids for hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 201, no. 1-3, 1999, pp. 420-422.
[96]S. W. Lee and C. S. Kim, “Mossbauer studies on the superparamagnetic behavior of CoFe2O4 with a few nanometers,” Journal of Magnetism and Magnetic Materials, vol. 303, no. 2, 2006, pp. e315-e317.
[97]蔡惠雯、賴建銘、林俊男、蔡麗端,「燃料電池中不同鉤系觸媒載體之電化學活性與耐久性研究」,防蝕工程,第二十七卷,第一期, 2013,第45-54頁。[98]W. Chen, J. Kim, S. Sun and S. Chen, “Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid,” Langmuir, vol. 23, no.22 2007, pp. 11303-11310.
[99]D. Xu, Y. Tian, J. Zhao and X. Wang, “High stability and reactivity of defective graphene supported FenPt13-n (n = 1, 2, and 3) nanoparticles for oxygen reduction reaction: a theoretical study,” Journal of Nanoparticle Research, vol. 17, no. 1, 2015, pp. 1-12.
[100]W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” The Journal of Physical Chemistry C, vol. 114, no.4 2010, pp. 1822-1826.
[101]X. Zhang, H. Sun, Z. Li, J. Xu, S. Jiang, Q. Zhu, A. Jin and G. S. Zakharova, “Synthesis and electrochromic characterization of vanadium pentoxide/graphene nanocomposite films,” Journal of The Electrochemical Society, vol. 160, no. 9, 2013, pp. H587-H590.
[102]吳紫陵,利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面,碩士論文,國立中央大學化學研究所,桃園,2000。[103] G. Wu, Y. S. Chen and B.Q. Xu, “Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation,” Electrochemistry Communications, vol.7, no. 12, 2005, pp. 1237-1243.