跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭至儒
研究生(外文):Chih-Zu Kuo
論文名稱:鐵鉑–還原氧化石墨烯奈米複合材料合成及特性分析
論文名稱(外文):Synthesis and characterization of FePt/ reduced graphene oxide (rGO) nanocomposites
指導教授:魏大華
指導教授(外文):Da-Hua Wei
口試委員:曾駿逸余岳仲陳洋元姚永德
口試日期:2015-07-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:103
語文別:中文
中文關鍵詞:催化催化劑儲能一鍋合成法赫摩爾斯法還原氧化石墨烯鐵鉑
外文關鍵詞:CatalyticCatalystEnergy storageOne-potHummers’ methodreduced graphene oxide (rGO)FePt
相關次數:
  • 被引用被引用:6
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用一鍋合成法在沒有表面活性劑之條件下成功製備出鐵鉑奈米粒子–還原氧化石墨烯奈米複合材料。採用低毒性之乙二醇作為溶劑與還原劑、氧化石墨奈米薄片作為鐵鉑奈米粒子之成長環境。鐵鉑–還原氧化石墨烯奈米複合材料之微結構、組成、表面形貌和磁學性質等特性透過X光粉末繞射儀、傅立葉轉換紅外線光譜儀、拉曼光譜儀、掃描式電子顯微鏡、穿透式電子顯微鏡、振動試樣磁力計、高週波加熱器與恆電位儀進行檢測。綜合上述分析結果,以X光繞射儀觀察到還原氧化石墨烯與鐵鉑之繞射峰。透過拉曼光譜儀可以看到還原氧化石墨烯之主要特徵G band與D band在1591 cm-1與1356 cm-1左右出現。傅立葉轉換紅外線光譜儀可知其擁有烷基(C-O)、醇(C-H)和亞甲基(-CH2-)等官能基。鐵鉑–還原氧化石墨烯材料擁有飽和磁化量10.81 emu/g。並發現添加不同還原氧化石墨烯前驅物時,其飽和磁化量隨氧化石墨增加而明顯降低。從上述的分析結果可以看到鐵鉑與還原氧化石墨烯間緊密的相互作用有利於電子傳輸,從而有望實現雙電層電容器之高效能電催化劑。此外,鐵鉑–石墨烯奈米複合材料展現了多功能在親水性、鐵磁性與增強之電催化活性。
In this study, FePt nanoparticles (NPs)/reduced graphene oxide (rGO) nanocomposites have been synthesized using a one-pot strategy without any surfactants. Ethylene glycol (EG) functions as both solvent and reductant, whereas graphene oxide (GO) nanosheets provide anchoring sites for the nucleation growth of FePt NPs. The microstructure, composition, surface morphology and magnetic property of the FePt/rGO nanocomposites are methodically characterized by XRD, FT-IR, Raman spectrum, SEM, TEM, VSM and potentiostat. From the above analysis results, it can be observed that the diffraction peak of rGO and FePt in the XRD pattern, and the main features G and D band of rGO that appeared at around 1591 cm-1and 1356 cm-1 were observed in the Raman spectrum. From the FT-IR spectrum, C-O (alcohol), C-H (alkane) and -CH2- (methylene) were observed respectively. The saturation magnetization (Ms) of rGO/FePt nanocomposites was 10.81 emu/g. The results show that high concentration of GO as rGO precursor, could significantly reduce the saturation magnetization of as-prepared nanocomposites. The tight interaction can be observed between the FePt and rGO, which is beneficial for the electron transport, thus making it a promising candidate as an efficient electrocatalyst in electrical double-layer capacitors (EDLC), besides, the FePt/GO nanocomposites exhibit multifunctions such as hydrophilicity, ferromagnetism and enhanced electrocatalytic activity.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的與範圍 3
第二章 文獻回顧與理論 4
2.1 奈米材料 4
2.2 奈米粒子的基本特性 4
2.3.1 表面效應 4
2.3.2 量子尺寸效應 5
2.3.3 小尺寸效應 6
2.3.4 量子穿隧效應 7
2.3.5 庫倫堵塞效應 9
2.3.6 奈米粒子的製備 9
2.3 鐵鉑奈米粒子之特性 11
2.4 鐵鉑奈米粒子之製備 12
2.5 石墨烯 15
2.6 氧化石墨奈米薄片製備 16
2.7 鐵鉑–還原氧化石墨烯奈米複合材料製備 17
2.8 鐵鉑–還原氧化石墨烯奈米複合材料之應用 19
第三章 實驗方法及步驟 20
3.1 製備氧化石墨 21
3.1.1 實驗藥品 22
3.1.2 實驗設置 22
3.1.3 實驗步驟 23
3.2 製備鐵鉑–還原氧化石墨烯奈米複合材料 24
3.2.1 實驗藥品 25
3.2.2 實驗設置 25
3.2.3 實驗步驟 26
3.2.4 熱退火處理 27
3.3 儀器介紹 27
3.3.1. X光繞射儀 27
3.3.2. 場發射掃描式電子顯微鏡 28
3.3.3. 穿透式電子顯微鏡 30
3.3.4. 傅立葉轉換紅外線光譜儀 31
3.3.5. 振動試樣磁力計 32
3.3.6. 拉曼光譜儀 33
3.3.7. 高週波加熱器 34
3.3.8. 恆電位儀 35
第四章 實驗結果與討論 37
4.1. 氧化石墨奈米薄片 37
4.1.1 氧化石墨奈米薄片之晶體結構分析` 37
4.1.2 氧化石墨烯奈米薄片之表面性質分析 39
4.1.3 氧化石墨烯奈米薄片之形貌分析 40
4.2. 鐵鉑–還原氧化石墨烯之熱退火效應 43
4.3.1 鐵鉑–還原氧化石墨烯真空熱退火之晶體結構 43
4.3.2 鐵鉑–還原氧化石墨烯真空熱退火之表面形貌 48
4.3.3 鐵鉑–還原氧化石墨烯真空熱退火之表面性質 50
4.3.4 鐵鉑–還原氧化石墨烯真空熱退火之磁學性質 51
4.3. 鐵鉑–還原氧化石墨烯的實驗結果與討論 55
4.2.1 鐵鉑–還原氧化石墨烯之晶體結構分析 56
4.2.2 鐵鉑–還原氧化石墨烯之表面性質分析 60
4.2.3 鐵鉑–還原氧化石墨烯之形貌分析 62
4.2.4 鐵鉑–還原氧化石墨烯之磁學分析 68
4.2.5 鐵鉑–還原氧化石墨烯之磁熱療檢測 73
4.2.6 鐵鉑–還原氧化石墨烯之電化學性質 75
第五章 結論 86
參考文獻. 87
[1]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, “Supercapacitor Devices Based on Graphene Materials,” The Journal of Physical Chemistry C, vol. 113, no. 30, 2009, pp. 13103-13107.
[2]Z. Ji, G. Zhu, X. Shen, Hu Zhou, C. Wu and M. Wang, “Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation,” New Journal of Chemistry, vol. 36, 2012, pp. 1774-1780.
[3]蔡定平,奈米檢測技術,新竹,臺灣:國家實驗研究院儀器科技研究中心,2009。
[4]蔡信行、孫光中,奈米科技導論-基本原理及應用,臺北:新文京開發,2004。
[5]郭清癸、黃俊傑、牟中原,「金屬奈米粒子的製造」,物理雙月刊,第二十三卷,第六期,2001,第614頁。
[6]王世敏,許祖勛、傅晶,奈米材料原理與製備,臺北:五南圖書,2004。
[7]W. S. Hummers Jr. and R. E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, vol. 80, no. 6, 1958, pp. 1339-1339.
[8]P. G. Gassman, T. J. van Bergen and G. Gruetzmacher, “Use of halogen-sulfide complexes in the synthesis of indoles, oxindoles, and alkylated aromatic amines,” Journal of the American Chemical Society, vol. 95, no. 19, 1973, p. 6508.
[9]P. G. Gassman, T. J. van Bergen,D. P. Gilbert and B. W. Cue Jr., “General method for the synthesis of indoles,” Journal of the American Chemical Society, vol. 96, no. 17, 1974, p.5495.
[10]P. G. Gassman and T. J. van Bergen, “Oxindoles. New, general method of synthesis,” Journal of the American Chemical Society, vol. 96, no. 17, 1974, p. 5508.
[11]P. G. Gassman, T. J. van Bergen and G. Gruetzmacher, “Generation of azasulfonium salts from halogen-sulfide complexes and anilines. Synthesis of indoles, oxindoles, and alkylated aromatic amines bearing cation stabilizing substituents,” Journal of the American Chemical Society, vol. 96, no. 17, 1974, p.5512.
[12]G. Gassman and T. J. van Bergen, “Indoles from anilines: ethyl 2-methylindole-5-carboxylate,” Organic Syntheses, vol. 56, 1977, p.72, vol. 6, 1988, p. 601.
[13]H. Ishikawa; T. Suzuki and Y. Hayashi, “High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-oseltamivir by three &;quot;one-pot&;quot; operations,” Angewandte Chemie International Edition, vol. 48, no. 7, 2009, pp.1304-1307.
[14]T. B. Massalski, Binary alloy phase diagrams, Materials Park, OH: ASM Internation, 1990.
[15]S. H. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,”Science, vol. 287, no. 5460, 2000, pp. 1989-1992.
[16]J. Kim, Y. Lee, and S. Sun, “Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction,” Journal of the American Chemical Society, vol. 132, 2010, pp. 4996-4997.
[17]黃彥傑,鐵鉑–二氧化鋯奈米複合材料合成及特性分析,碩士論文,國立國立臺北科技大學機電整合研究所,臺北,2013。
[18]S. Y. Bae, K. H. Shin, J. Y. Jeong and J. G. Kim, “Feasibility of FePt longitudinal recording media for ultrahighdensity recording,” Journal of Applied Physics, vol. 87, no. 9, 2000, p. 6953.
[19]鍾騏任,鐵鉑-二氧化鈦奈米複合材料合成及特性分析,碩士論文,國立國立臺北科技大學機電整合研究所,臺北,2012。
[20]B. Rellinghaus, E. Mohn, L. Schultz, T. Gemming, M. Acet, A. Kowalik and B. F. Kock, “On the L10order kinetics in Fe-Pt nanoparticles,” IEEE Transactionson Magnetics, vol. 42, no. 10, 2006, pp.3048-3050.
[21]L. C. Varanda and M. Jafelicci, Jr., “Self-assemble FePt nanocrystals with large coercivity: reduction of the fcc-to-L10ordering temperature,” Journal of the American Chemical Society, vol. 128, no.34, 2006, pp 11062-11066.
[22]L. Y. Lu, D. Wang, X. G. Xu, Q. Zhan and Y. Jiang, “Enhancement of magnetic properties for FePt nanoparticles by aapid annealing in a vacuum,” The Journal of Physical Chemistry C, vol. 113, no.46, 2009, pp 19867-19870.
[23]M. Nakaya, M. Kanehara and T. Teranishi, “One-pot synthesis of large FePt nanoparticles from metal salts and their thermal stability,” Langmuir, vol. 22, no. 8, 2006, pp. 3485-3487.
[24]C. H. Yu, N. Caiulo, C. C. H. Lo, K. Tam and S. C. Tsang, “Synthesis and Fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles,” Advanced Materials, vol. 18, no.17, 2006, pp. 2312-2314.
[25]T. Burkert, O. Eriksson, S. I. Simak, A. V. Ruban, B. Sanyal, L. Nordström, J. M. Wills, “Magnetic anisotropy of L10 FePt and Fe1-xMnxPt,”Physical Review B, vol 71, 2005, p. 134411.
[26]O. Kitakami, S. Okamoto, N. Kikuchi and Y. Shimada, “Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films,” Physical Review B, vol.66, 2002, p. 024413.
[27]J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gyorffy, L. Szunyogh, B. Ginatempo, E. Bruno, “Temperature dependent magnetic anisotropy in metallic magnets from an ab initio electronic structure theory: L10-ordered FePt,” Physical Review Letters, vol. 93, 2004, p. 257204.
[28]S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science, 287, no. 5460, 2000, p.1989.
[29]S. Sun, Eric E, D. Weller and C. B Murray, “Compositionally controlled FePt nanoparticle materials,” IEEE Transactions on Magnetics, vol. 37, no. 4, 2001, p.1239.
[30]S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murrayand Bruce D. Terris, “Controlled synthesis and assembly of FePt nanoparticles,” The Journal of Physical Chemistry B, vol. 107, no.23, 2003, pp. 5419-5425.
[31]K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method”, Nano Letters, vol. 3, no. 12, 2003, p. 1647.
[32]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, 2004, pp. 666 -669.
[33]C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer grapheme,” Science, vol. 321, no. 5887, 2008, pp. 385-388.
[34]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, 2008, p. 1308.
[35]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior thermal conductivity of single-layer grapheme,” Nano Letters, vol. 8, no. 3, 2008, pp. 902-907.
[36]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, “Ultrahigh electron mobility in suspended grapheme,” Solid State Communications, vol. 146, 2008, pp. 315-355.
[37]盧柏諺,利用XAS對電致色變氧化釩/石墨烯薄膜原子與電子結構之研究,碩士論文,國立國立臺北科技大學製造科技研究所,臺北,2014。
[38]B. C. Brodie, “On the atomic weight of graphite,” The Royal Society, vol. 149, no. 1859, pp. 249-259.
[39]W. S. Hummers, Jr., R. E. Offeman, “Preparation of graphite oxide,” Journal of the American Chemical Society, vol. 80, no. 6, 1958, p. 1339.
[40]R. Muszynski, B. Seger, and P. V. Kamat, “Decorating graphene sheets with gold nanoparticles,” The Journal of Physical Chemistry C, vol. 112, no. 14, 2008, pp. 5268-5266.
[41]K. Vinodgopal, B. Neppolian, I. V. Lightcap, F. Grieser, M. Ashokkumar and P. V. Kamat, “Sonolytic design of graphene-Au nanocomposites. simultaneous and sequential reduction of graphene oxide and Au(III),”The Journal of Physical Chemistry Letters, vol. 1, no. 13, 2010, pp. 1987-1993.
[42]Y. Ye, Y. Dai, L. Dai, Z. Shi, N. Liu, F. Wang, L. Fu, R. Peng, X. Wen, Z. Chen, Z. Liu, and G. Qin, “High-performance single CdS nanowire (nanobelt) schottky junction solar cells with Au/graphene Schottky electrodes,” ACS Applied Materials &; Interfaces, vol. 2, no. 12, 2010, pp. 3406-3410.
[43]S. Lee, M. H. Lee, H. J. Shin and D. Choi, “Control of density and LSPR of Au nanoparticles on grapheme,” Nanotechnology, vol. 24, no.27, 2013, pp. 275702(1) - 275702(7).
[44]T. Jian, L. A. Ping, L. P. Gang, S. J. Qin and T. W. Hua, “Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface eself-assembling,” Acta Physica Sinica, vol. 63, no. 10, 2014, pp. 107801(1)-107801(7).
[45]Y. Liu, H. Yu, H. Wang, S. Chen and X. Quan, “Efficient H2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2,” Materials Research Bulletin, vol. 59, 2014, pp.111-116.
[46]S. J. Guo and S. Sun, “FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction,” Journal of the American Chemical Society, vol. 134, no.5, 2012, pp. 2492-2495.
[47]G. Wei, Y. Zhang, S. Steckbeck, Z. Su and Z. Li, “Biomimetic graphene–FePt nanohybrids with high solubility, ferromagnetism, fluorescence, and enhanced electrocatalytic activity,” Journal of Materials Chemistry, vol. 22, 2012. pp. 17190-17195.
[48]D. Chen, X. Zhao, S. S. Chen, H. F. Li, X. N. Fu, Q. Z. Wu, S. P. Li, Y. Li, B. L. Su and R. S. Ruoff, “One-pot fabrication of FePt/reduced graphene oxide composites as highly active and stable electrocatalysts for the oxygen reduction reaction,” Carbon, vol. 68, 2014, pp. 755-762.
[49]J. Guo, Y. Sun, X. Zhang, L. Tang and H. Liu, “FePt nanoalloys anchored reduced graphene oxide as high-performance electrocatalysts for formic acid and methanol oxidation,” Journal of Alloys and Compounds, vol. 604, 2014, pp. 286-291.
[50]J. C. Yang, W. Zhang, “Indicator-free impedimetric detection of BCR/ABL fusion gene based on ordered FePt nanoparticle-decorated electrochemically reduced graphene oxide,” Journal of Solid State Electrochemistry, vol. 18, no. 10, 2014, pp. 2863-2868.
[51]X. Hu, V. Tzitzios, D. Sellmyer and G. Hadjipanayis, “Facile synthesis of L10 FePt/reduced-graphene oxide nanocomposites,” APS March Meeting 2015, San Antonio, Texas, 2015, vol. 60, no. 1.
[52]張浩恩,商用鉑碳催化劑特性鑑定分析,碩士論文,元智大學先進能源研究所,桃園,2011。
[53]W. Zhang and Y. Su, “Development of DNA monitoring platform based on poly(xanthurenic acid) functionalized FePt/reduced graphene oxide,” Journal of Solid State Electrochemistry, vol. 19, no. 5, 2015, pp. 1285-1291.
[54]K. Krishnamoorthy, G. S. Kim, S. J. Kim, “Graphene nanosheets:Ultrasound assisted synthesisand characterization,” Ultrasonics Sonochemistry, vol. 20, no. 2, 2013, pp. 644-649.
[55]J. F. Shackelford,材料科學(蔡希杰譯),臺北:臺灣培生教育出版:偉明圖書,2008,第109頁、書附光碟。
[56]周景泰,鐵鉑–氧化鋅奈米結構合成及自組裝特性,碩士論文,國立國立臺北科技大學製造科技研究所,臺北,2011。
[57]汪建民,材料分析,臺北:民全書局,1998,第215、501-502、516、659、660、662、668頁。
[58]楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,第二十八卷,第四期,2006,第692頁。
[59]楊志信,「一致磁化轉動模型之磁化曲線特性」,中華民國磁性技術協會會刊,第二十八期,2001,第27頁。
[60]I. D. Mayergoyz, Mathematical Models of Hysteresis, New York: Springer-verlag, 1991.
[61]G. Bertotti, Hysteresis in Magnetism, New York: Academic Press, 1998.
[62]V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield and J. C. Bischof,“In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology, vol. 16, no. 8, 2005, 1221-1233.
[63]M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang and N. Gu, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field,” Journal of Magnetism and Magnetic Materials, vol 268, no. 1-2, 2004, pp.33-39.
[64]張富昌,電化學分析儀器,台北:徐氏基金會,1985,第111頁。
[65]K. Krishnamoorthy, M. Veerapandian, K. Yun and S. J. Kim, “The chemical and structural analysis of graphene oxide with different degrees of oxidation,” Carbon, vol. 53, 2013, pp. 38-49.
[66]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and Rodney S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, 2007, pp. 1558-1565.
[67]V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, “High-throughput solution process of large-scale graphene”, Nature Nanotechnology, vol. 4, 2009, pp. 25.
[68]M. Veerapandian, M. H. Lee, K. Krishnamoorthy and K. Yun, “Synthesis, characterization and electrochemical properties of functionalized graphene oxide,” Carbon, vol. 50, 2012, pp. 4228-4238.
[69]V. Gunasekaran, K. Krishnamoorthy, R. Mohan and S. J. Kim, “An investigation of the electrical transport properties of graphene-oxide thin films,” Materials Chemistry and Physics, vol. 132, 2012, pp. 29-33.
[70] 孔祥文,有機化學,北京:化學工業出版社,2010。
[71]K. Krishnamoorthy, R. Mohan and S. J. Kim, “Graphene oxide as a photocatalytic material,” Applied Physics Letters, vol. 98, no. 24, 2011, p. 244101.
[72]H. Kim, H. D. Lim, S. W. Kim, J. Hong, D. H. Seo, D. Kim, S. Jeon and S. Park, “Scalable functionalzed graphene nano-platelets as tunable cathodes for high-performance lithium rechargeable batteries,” Scientific Reports, vol. 3, 2013, p. 1506.
[73]L. Wei, F. Wu, D. Shi, C. Hu, X. Li, W. Yuan, J. Wang, J. Zhao, H. Geng, H. Wei, Y. Wang, N. Hu and Y. Zhang, “Spaontaneous intercalation of long-chainalkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene,” Scientific Reports, vol. 3, 2013, p. 2636.
[74]K. Tada, J. Haruyama, H. X. Yang, M. Chshiev, T. Matsui, and H. Fukuyama, “Graphene magnet realized by hydrogenated graphene nanopore arrays,” Applied Physics Letters, vol. 99, 2011, pp.183111(1)-183111(3).
[75]S. H. Huh, Physics and Applications of Graphene-Experiments, Rijeka, Croatia: InTech, 2011, pp. 74-90.
[76]X. Li, L. An, X. Wang, F. Li, R. Zou and D. Xia, “Supported sub-5nm Pt–Fe intermetallic compounds for electrocatalyticapplication,” Journal of Materials Chemistry, vol. 22, 2012, pp. 6047-6052.
[77]K. Krishnamoorthy, M. Veerapandian, R. Mohan and S. J. Kim, “Investigation of Raman and photoluminescence studies of reduced grapheme oxide sheets,” Applied Physics A, vol. 106, no. 3, 2012, pp. 501-506.
[78]J. A. Christodoulides, M. J. Bonder, Y. Huang, Y. Zhang, S. Stoyanov, and G. C. Hadjipanayis, “Intrinsic and hysteresis properties of FePt nanoparticles,” Physical Review B, vol. 68, 2003, p. 054428.
[79]M. Wang, L. D. Duong, J. S. Oh, N. T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee and J. D. Nam, “Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD),”ACS Applied Materials &; Interfaces, vol. 6, no. 3, 2014, pp. 1747-1753.
[80]C. M. Chen, J. Q. Huang, Q. Zhang, W. Z. Gong, Q. H. Yang, M. Z. Wang and Y. G. Yang, “Annealing a graphene oxide film to produce a free standing high conductive graphene film,” Carbon, vol. 50, no. 2, 2012, pp. 659-667.
[81]V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, “High-throughput solution processing of large-scale graphene”, Nature Nanotechnology, vol. 4, 2009, pp. 25-29.
[82]K. Krishnamoorthy, M. Veerapandian, L. H. Zhang, K. S. Yun and S. J. Kim, “Antibacterial efficiency of graphene nanosheeta against pathogenic bacteria via lipid peroxidation,” The Journal of Physical Chemistry C, vol. 116, no. 32, 2012, pp. 17280-17287.
[83]S. Mikhailov, Physics and Applications of Graphene - Experiments, Rijeka, Croatia: InTech, 2011, pp. 83-86.
[84]P. Guo, H. Song and X. Chen, “Electrochemical performance of graphene nanosheets as anode materialfor lithium-ion batteries,” Electrochemistry Communications, vol. 11, no. 6, 2009, p1323.
[85]P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang and H. Wang, “Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries,” Electrochimica Acta, vol. 55, no. 12, pp. 3909-3914.
[86]Y. K. Takahashi, T. Ohkubo, M. Ohnuma and K. Hono, “Size effect on the ordering of FePt granular films,” Journal of Applied Physics, vol. 93, no. 10, 2003, pp. 7166-7168.
[87]Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo and K. Hono, “Size dependence of ordering in FePt nanoparticles,” Journal of Applied Physics, vol. 95, no. 5, 2004, pp. 2690-2696.
[88]H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.P. Schönherr, and K. H. Ploog, “Room-Temperature Spin Injection from Fe into GaAs,” Physical Review Letters, vol. 87, no. 1, 2001, pp. 016601(1)-016601(4).
[89]A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide,” Nature Chemistry, vol. 2, 2010, pp.581–587.
[90]D. E. Sayers, E. A. Stern, and F. W. Lytle, “New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray—absorption fine structure,” Physical Review Letters, Vol. 27, 1971, p. 1024.
[91]X. Wanga, H. Gub and Z. Yang, “The heating effect of magnetic fluids in an alternating magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 293, no. 1, 2005, pp. 334-340.
[92]T. Hosono, H. Takahashi, A. Fujita, R. J. Joseyphus, K. Tohji and B. Jeyadevan, “Synthesis of magnetite nanoparticles for AC magnetic heating,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 19, 2009,pp. 3019-3023.
[93]T. Kikuchi, R. Kasuya, S. Endo, A. Nakamura, T. Takai, N. M. Nolte, K. Tohji and J. Balachandran, “Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 10, 2011, pp. 1216-1222.
[94]M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang and N. Gu, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 268, no. 1-2, 2004,pp. 33-39.
[95]R. Hiergeist, W. Andrak, N. Buske, R. Hergt, I. Hilger, U. Richter and W. Kaiser, “Application of magnetite ferrofluids for hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 201, no. 1-3, 1999, pp. 420-422.
[96]S. W. Lee and C. S. Kim, “Mossbauer studies on the superparamagnetic behavior of CoFe2O4 with a few nanometers,” Journal of Magnetism and Magnetic Materials, vol. 303, no. 2, 2006, pp. e315-e317.
[97]蔡惠雯、賴建銘、林俊男、蔡麗端,「燃料電池中不同鉤系觸媒載體之電化學活性與耐久性研究」,防蝕工程,第二十七卷,第一期, 2013,第45-54頁。
[98]W. Chen, J. Kim, S. Sun and S. Chen, “Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid,” Langmuir, vol. 23, no.22 2007, pp. 11303-11310.
[99]D. Xu, Y. Tian, J. Zhao and X. Wang, “High stability and reactivity of defective graphene supported FenPt13-n (n = 1, 2, and 3) nanoparticles for oxygen reduction reaction: a theoretical study,” Journal of Nanoparticle Research, vol. 17, no. 1, 2015, pp. 1-12.
[100]W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” The Journal of Physical Chemistry C, vol. 114, no.4 2010, pp. 1822-1826.
[101]X. Zhang, H. Sun, Z. Li, J. Xu, S. Jiang, Q. Zhu, A. Jin and G. S. Zakharova, “Synthesis and electrochromic characterization of vanadium pentoxide/graphene nanocomposite films,” Journal of The Electrochemical Society, vol. 160, no. 9, 2013, pp. H587-H590.
[102]吳紫陵,利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面,碩士論文,國立中央大學化學研究所,桃園,2000。
[103] G. Wu, Y. S. Chen and B.Q. Xu, “Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation,” Electrochemistry Communications, vol.7, no. 12, 2005, pp. 1237-1243.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top