跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭宜鑫
研究生(外文):Kuo, Yi-Hsin
論文名稱:二氧化氯對水體及底泥中硝基呋喃代謝物降解之影響
論文名稱(外文):The Effect of Chlorine Dioxide on Nitrofuran Metabolites Degradation in Water and Sediments
指導教授:冉繁華冉繁華引用關係
指導教授(外文):Nan, Fan-Hua
口試委員:冉繁華秦宗顯劉秉忠
口試委員(外文):Nan, Fan-HuaChin, Tzong-SheanLiu, Ping-Chung
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:117
中文關鍵詞:二氧化氯硝基呋喃代謝物降解水體底泥
外文關鍵詞:chlorine dioxidenitrofuranmetabolitedegradationwatersediment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討在淡水與海水環境中,不同濃度二氧化氯 (Chlorine Dioxide,ClO2) 對水及底泥中四種硝基呋喃代謝物 (AOZ、AMOZ、SC及AH ) 降解之影響與硝基呋喃代謝物在水體及底泥中的殘留情形。實驗分為四個部分,第一部分為建立四種硝基呋喃代謝物於水體及底泥中的檢測方法,結果顯示確效性能參數之專一性、回收率、重複性及定量極限皆符合衛生福利部食品藥物管理署食品化學檢驗方法之確效規範,其中四種硝基呋喃代謝物於淡水、海水及底泥中之定量極限均達0.5 ng/mL,回收率則介於90.10~109.97 %。
第二部分為不同濃度 (1、5及10 mg/L) 二氧化氯對水體中100 ng/mL 硝基呋喃代謝物降解之影響,結果顯示:1 mg/L二氧化氯處理1天後即可有效降解淡水及海水中的硝基呋喃代謝物,而各處理組中又以10 mg/L二氧化氯處理效果最顯著,不論在淡水及海水環境下 10 mg/L二氧化氯處理2天後AOZ、AMOZ、SC及AH濃度皆低於檢出限量。
第三部分為不同濃度 (10、20及40 mg/L) 二氧化氯對底泥中100 ng/mL硝基呋喃代謝物降解之影響,結果顯示各處理組中以40 mg/L二氧化氯添加效果最顯著,處理後1天即可有效降低淡水底泥及海水底泥各處理組中硝基呋喃代謝物之濃度。
第四部分為100 ng/mL四種硝基呋喃代謝物於水及底泥中的殘留情形,水中的結果顯示實驗終點 (第 90 天) AOZ於淡水及海水中殘留量為42.07 ± 0.80 及35.10 ± 0.35 ng/mL,AMOZ於淡水及海水中殘留量為31.23 ± 0.08 及21.08 ± 0.25 ng/mL,SC於淡水中殘留量為11.82 ± 0.53 ng/mL,於海水中則低於檢出限量,AH於淡水及海水中殘留量為51.17 ± 0.29 及7.03 ± 0.53 ng/ mL,但是SC在實驗第30天於海水中殘留量還有1.09 ± 0.19 ng/mL。底泥中的實驗結果顯示第1天四種硝基呋喃代謝物於淡水底泥及海水底泥中殘留濃度快速下降,之後隨時間增長,下降速度趨於緩慢,實驗終點 (第 90 天) AOZ於淡水底泥及海水底泥中殘留量為4.98 ± 0.12 及5.49 ± 0.73 ng/mL,AMOZ於淡水底泥及海水底泥中殘留量為32.78 ± 0.64 及30.02 ± 0.77 ng/mL,SC於淡水底泥及海水底泥中殘留量為1.52 ± 0.01 及1.58 ± 0.09 ng/mL,AH於淡水底泥及海水底泥中殘留量為1.11 ± 0.03 及1.31 ± 0.04 ng/mL。
本實驗結果顯示二氧化氯可以降解水體及底泥中四種硝基呋喃代謝物,但二氧化氯於底泥中需比水中使用更高的濃度。四種硝基呋喃代謝物連續 90 天後仍會殘留於水及底泥中,且在淡水中比在海水中有更高的殘留濃度。

The objective of this study was to investigate the effect of different concentrations of chlorine dioxide (ClO2) on degradation of four nitrofuran metabolites (AOZ, AMOZ, SC and AH) in freshwater and seawater environments of water and sediments; also to understand the situation of nitrofuran metabolites residues in water and sediments.
Experiment consisted of four parts, first was to establish the method for detecting the four nitrofuran metabolites in water and sediments, and the results showed that specificity, recovery, repeatability and limits of quantification were in line with the validation of Method of Test for chemistry in foods of Food and Drug Administration. Limits of quantification of four nitrofuran metabolites in freshwater, seawater and sediments were reached 0.5 ng/mL, and the recovery rate were between 90.10~109.97 %.
Second was the different concentrations (1, 5 and 10 mg/L) of chlorine dioxide on 100 ng/mL nitrofuran metabolites degradation in freshwater and seawater. Results showed that 1 mg/L chlorine dioxide was effective immediately in 1 day after treatment for nitrofuran metabolites in freshwater and seawater, and treatment with 10 mg/L chlorine dioxide showed the most significant result both in freshwater and seawater which the concentrations of AOZ, AMOZ, SC and AH were below the limits of quantification after 10 mg/L chlorine dioxide treatment 2 day.
Third was the different concentrations (10, 20 and 40 mg/L) of chlorine dioxide on 100 ng/mL nitrofuran metabolites degradation in sediments with freshwater and seawater. Results showed that 40 mg/L chlorine dioxide treatment effect was the most significant and effective immediately in 1 day after treatment for nitrofuran metabolites in sediments with freshwater and seawater.
Fourth was to investigate the degradation of 100 ng/mL nitrofuran metabolites in water and sediments during 90 days. In freshwater and seawater, results indicated that AOZ was 42.07 ± 0.80 and 35.10 ± 0.35 ng/mL, AMOZ was 31.23 ± 0.08 and 21.08 ± 0.25 ng/mL, SC was 11.82 ± 0.53 ng/mL and below the quantification limit, and AH was 51.17 ± 0.29 and 7.03 ± 0.53 ng/ mL on ninetieth day; but SC was still 1.09 ± 0.19 ng/mL in seawater on thirtieth day. In sediments, outcome was that four nitrofuran metabolites were degraded immediately in 1 day. The degradation rate of nitrofuran metabolites became slow with time. In sediments with freshwater and seawater on ninetieth day, AOZ was 4.98 ± 0.12 and 5.49 ± 0.73 ng/mL, AMOZ was 31.23 ± 0.08 and 21.08 ± 0.25 ng/mL, SC was 1.52 ± 0.01 and 1.58 ± 0.09 ng/mL, and AH was 1.11 ± 0.03 and 1.31 ± 0.04 ng/mL.
This experiment pointed that chlorine dioxide (ClO2) can degrade four nitrofuran metabolites (AOZ, AMOZ, SC and AH) in freshwater and seawater environments, and higher concentration was needed in sediments than in water. Four nitrofuran metabolites would remain in water and sediments for a long period, and the remaining time in seawater is longer than in freshwater.


謝辭 i
摘要 ii
Abstract iii
目錄 v
表目錄 vi
圖目錄 ix
第一章 前言 1
第二章 文獻整理 3
一、抗生素在環境中流佈及影響 3
二、硝基呋喃及其代謝物之簡介 3
三、二氧化氯 (Chlorine Dioxide,ClO2) 6
四、抗生素檢測技術之探討 9
第三章 材料與方法 13
一、實驗土壤 13
二、實驗水體 13
三、二氧化氯 13
四、硝基呋喃代謝物之檢測方法 13
五、方法確效 17
六、實驗設計 19
七、數據分析 20
第四章 結果 21
一、AOZ、AMOZ、SC、AH 之方法確效 21
二、不同濃度二氧化氯對於水中硝基呋喃代謝物 (AOZ、AMOZ、SC 及 AH ) 降解之影響 23
三、不同濃度二氧化氯對於底泥中硝基呋喃代謝物 (AOZ、AMOZ、SC 及 AH ) 降解之影響 26
四、AOZ、AMOZ、SC 及 AH 於水體及底泥中之殘留濃度 29
第五章 討論 37
一、AOZ、AMOZ、SC 及 AH方法確校之探討 37
二、不同濃度二氧化氯對於水及底泥中硝基呋喃代謝物 (AOZ、AMOZ、SC 及AH ) 降解之探討 39
三、AOZ、AMOZ、SC 及 AH 於水體及底泥中殘留濃度之探討 43
第六章 結論 47
參考文獻 49






中華人民共和國農業部,2003。食品動物禁用的獸藥及其他化合物清單第 193 號。
王德敏,2008。以液相層析串聯式質譜儀測定水產品中三苯甲烷類化合物及其代謝物。國立中山大學海洋生物科技暨資源學系研究所碩士論文。
王興維,2010。二氧化氯與抗 NNV IgY 對點帶石斑魚苗活存之影響。國立臺灣海洋大學水產養殖學系研究所碩士論文。
行政院農業委員會,2003。公告禁止製造、輸入、販賣、輸出、使用含硝基呋喃類 (Nitrofurans) 之動物用藥品。農授防字第 0921473181號令。
行政院農業委員會,2003。有機農產品生產規範-畜產。農牧字第 0920040650 號。
行政院衛生福利部,2013。動物用藥殘留標準。衛署食字第 1021300534 號令修正。
行政院衛生福利部,2010。食品添加物使用範圍及限量暨規格標準。署授食字第 0991303749 號修正。
行政院衛生福利部,2012。食品藥物管理署食品化學檢驗方法確效規範。行政院衛生福利部 101 年 10 月 15 日第一次修正。
行政院衛生福利部,2013。食品中動物用藥殘留量檢驗方法-硝基呋喃代謝物之檢驗。部授食字第 1021950758 號公告修正。
行政院環保署,2003。公告含五種成分之環境衛生用殺菌劑為不列管環境用藥,不適用環境用藥管理法之規定。環署毒字第 0920056920 號。
行政院環保署,2006。公告氣態二氧化氯為飲用水水質處理藥劑。環署毒字第 0950052513 號。
行政院環保署,2013。環境用藥許可證申請核發作業準則。環署毒字第 1020048402 號令修正。
余雯惠,2009。硝基呋喃及其降解中間產物於養殖池水及泥漿中的宿命。國立嘉義大學水生生物科學系研究所碩士論文。
汪大翬、雷樂成,2001。水處理新技術及工程設計。化學工業出版社,58。
汪殿蓓,李建華,陳玉蘭,劉仁陽,2010。青檀天然群落土壤成分及其對青檀生長的影響。生態環境學報,19,2318-2324。
車同坤,2012。利用不同水質處理劑去除水中恩氟沙星與西氟沙星之研究。國立臺灣海洋大學水產養殖學系研究所碩士論文。
林明弘,2008。應用電灑法串聯式液質譜定量分析含heparin之人體血漿中的procaterol。大同大學生物工程學系研究所碩士論文。
林意珊,2011。二氧化氯應用於農藥之降解。國立屏東科技大學食品科學研究所碩士論文。
洪瑋辰,2010。點帶石斑魚投餵富來頓後藥物及代謝物之殘留。國立臺灣海洋大學水產養殖學系研究所碩士論文。
韋伯 (W.J.Weber),1980。水質控制物理化學方法。中國建築工業出版社,444。
姜俞亦,2011。添加二氧化氯對養殖水水質改善與水質淨化之試驗研究。中興大學環境工程學系研究所碩士論文。
范志云、黃君禮、王鵬、蘇立強、鄭永杰、李英杰,2004。二氧化氯氧化水中苯胺的反應動力學及機裡研究。環境科學,1,95-98。
范晨,2011。二氧化氯及碳酸鈣對養殖池水及底泥中 Fluoroquinolone 變化之影響。國立臺灣海洋大學水產養殖學系研究所碩士論文。
許秉洋,2012。二氧化氯對組織胺生產菌之殺菌作用。國立高雄海洋科技大學水產食品科學研究所碩士論文。
許庭禎,2002。新一代的殺菌劑-二氧化氯在水產品加工的應用。食品資訊,189,55-63。
陳京華,2009。海灣扇貝親貝、幼蟲和稚貝對二氧化氯耐受性的研究。中國農業學通報,7,279-283。
陳麗霞,2002。二氧化氯作為殺菌劑之特性及其在水產品之應用研究。國立臺灣海洋大學食品科學系研究所碩士論文。
畢曉伊、王鵬、姜虹、王曉東,2006。微波誘導二氧化氯氧化處理水中苯酚。遼寧石油化工大學學報,26,44-46。
黃君禮,1992。新型消毒劑二氧化氯處理飲用水之研究。環境科學,1,1-11。
黃淑華,2000。應用高效液相層析法檢測豬糞中四環素類抗生素及磺胺劑。國立中興大學獸醫系研究所碩士論文。
黃浩薰,2007。二氧化氯應用於台灣鯛殺菌製程之研究。屏東科技大學食品科學系研究所碩士論文。
彭德凱,2012。二氧化氯對養殖池底泥及紅色吳郭魚肉片中孔雀綠及還原型孔雀綠降解之影響。國立臺灣海洋大學水產養殖系研究所碩士論文。
曾素貞,2005。台灣五葉松萃取物抑菌試驗與致突變性之評估。國立屏東科技大學食品科學系研究所碩士論文。
曾琬甯,2006。有效二氧化氯的定量及其抗菌處理對鮪肉片品質的影響。國立高雄海洋科技大學水產食品科學研究所碩士論文。
賀啓環,1997。二氧化氯在環境保護中的應用。污染防治技術,2,88-89。
賀啓環 、方華、 張勇,2002。二氧化氯催化氧化處理難降解廢水技術研究進展。環境汙染治理技術與設備,9,63-65。
賀啓環 、方華、 張勇,2003。二氧化氯催化氧化處理難降解廢水技術的研究。環境汙染治理技術與設備,11,39-43。
葉俐君,2004。Amoxicillin 免疫酵素連結反應檢驗試劑開發及應用。國立中興大學獸醫學系研究所碩士論文。
趙呈維,2014。二氧化氯對養殖池水質改善之研究。嘉南藥理大學環境工程與科學系研究所碩士論文。
劉孟欣,2002。利用酵素免疫分析及氣象層析質譜儀確認分析尿液中氟硝西泮之主要代謝物。私立慈濟大學藥理暨毒理學系研究所碩士論文。
劉明哲,2004。二氧化氯(Chlorine Dioxide)生物除污滅菌效能研究。核生化防護半年刊,77,78-93。
蔡仲偉,2009。硝基呋喃劑及其代謝物於水產品中分析方法及吳郭魚體內硝基呋喃劑藥物殘留之研究。國立中山大學海洋生物科技暨資源研究所博士論文。
蔡佳均,2006。不同濃度羥四環黴素對吳郭魚殘留量及非特異性免疫反應之影響。國立臺灣海洋大學水產養殖學系研究所碩士論文。
劉鳳英、李鵬、程翠花、李會芹、郭士杰,2006。菊酯類農藥合成中含氰廢水的處理方法。農藥,8,533-534。
盧明俊、許菁珊、許琬舒,2006。二氧化氯在泥漿溫泉環境中之滅菌效能。嘉南學報 (科技類),1-12。
蘇柏欣,2005。應用高效液相層析法檢測 amoxicillin 在海鱺魚的殘留。國立中興大學獸醫學系研究所碩士論文。
蘇郁菁,2008。二氧化氯應用於家禽殺菌之研究。屏東科技大學食品科學系研究所碩士論文。
蘇雅鈴,2009。四環素在養殖池泥漿中降解之探討。國立嘉義大學水生生物科學系研究所碩士論文。
Ali, B. H., 1999. Pharmacological, therapeutic and toxicological properties of furazolidone: some recent research. Vet. Res. Commun. 23, 343-360.
Aranami, K., Readman, J. W., 2007. Photolytic degradation of triclosan in freshwater and seawater. Chemosphere. 66, 1052-1056.
Barbosa, J., Ferreira, M. L., Ramos, F., Silveira, M. I. N. D., 2007. Determination of the furaltadone metabolite 5-methylmorpholino-3-amino-2-oxazolidinone (AMOZ) using liquid chromatography coupled to electrospray tandem mass spectrometry during the nitrofuran crisis in Portugal. Accredit. Qual. Assur. 543-551.
Bender, B. R. C., Paul, H. E., 2007. Metabolism of the nitrofuans. J. Biol. Chem. 16, 217-222.
Bunton, T. E., 1996. Experimental chemical carcinogenesis in fish. Toxicol. Pathol. 24, 603-618.
Capleton, A. C., Courage, C., Rumsby, P., Holmes, P., Stutt, E., Boxall, A. B. A., Levy, L. S., 2006. Prioritising veterinary medicines according to their potential indirect human exposure and toxicity profile. Toxicol. Lett. 163, 213-223.
Chang, C., Peng, D. P., Wu, J. E., Wang, Y. L., Yuan, Z. H., 2008. Development of an indirect competitive ELISA for the detection of furazolidone marker residue in animal edible tissues. Food Chem. 56, 1525–1531.
Cheng, C. C., Hsieh, K. H., Lei, Y. C., Tai, Y. T., Chang, T. H., Sheu, S. Y., Li, W. R., Kuo, T. F., 2009. Development and residue screening of the furazolidone metabolite, 3-Amino-2-oxazolidinone (AOZ), in cultured fish by an enzyme-linked immunosorbent assay. Food Chem. 57, 5687–5692.
Choo, P. S., 1998. Degradation of furazolidone in fresh- and seawater. Asian Fish. Sci. 11, 295-301.
Commission, D., 2002. Implementing Council Directive 2002/657/EC, concerning the performance of analytical methods and the interpretation of results. OJEU. 220, 16-17.
Commission, R., 1993. Commission Regulation (EC) 2901/93, of 18 October 1993, amending Annexes I, II, III and IV to Regulation (EEC) No 2377/90 laying down a Community Procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. OJEU. L 264, 1-4.
Commission, R., 1995. Commission Regulation 1442/95, of 26 June 1995, amending Annexes I, II, III and IV to Regulation (EEC) No 2377/90 laying down a Community Procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. OJEU. L 143, 26-30.
Doi, A. M., Stoskopf, M. K., 2000. The kinetics of oxytetracycline degradation in deionized water under varying temperature, pH, light, substrate and organic matter. J. Aquat. Anim. Health. 12, 246-253.
Dietrich, A. M., Orr, M. P., Gallagher, D. L., Hoehn, R. C., 1992. Tastes and odors associated with chlorine dioxide. J. Am. Water Works Assoc. 84, 82-88.
Finzi, J. K., Donato, J. L., Sucupira, M., Nucci, G. D., 2005. Determination of nitrofuran metabolites in poultry muscle and eggs by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 824, 30-35.
Goñi, M. A., Moore , E., Kurtz, A., Portier, E., Alleau, Y., Merrell, D., 2014. Organic matter compositions and loadings in soils and sediments along the Fly River, Papua New Guinea. Geochim. Cosmochim. Acta. 140, 275-296.
Gordon, G., Bubnis, B., 1999. Ozone and chlorine dioxide: Similar chemistry and measurement issues. Chem. Eng. Sci. 21, 447-464.
Gordon, G., Kieffer, R. G., Rosenblatt, D. H., 1972. The histortry of chlorine dioxide. Prog. Inorg. Chem. 15, 201-286.
Hernandez-Jauregui, P., Revilla-Monsalve, C., Velasco-Monterrubio, E., 1983. Effects of furazolidone treatment on the morphology of rooster testicle. Light and electron microscopy study. Arch. Investig. Med. 14, 1-8.
Huber, M. M., Korhonen, S., Ternes, T. A., Von Gunten, U., 2005. Oxidation of pharmaceuticals during water treatment with chlorine dioxide.Water Res. 39, 3607-3617.
Kahle, M., Stamm, C., 2007. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environ. Sci. Technol. 41, 132-138.
Khong, S. P., Gremaud E., Richoz J., Delatour T., Guy P. A., Stadler R. H., Mottier P., 2004. Analysis of matrix bound nitrofuran residues in worldwide-originated honeys by isotope dilution high-performance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 52, 5309-5315.
Korsrud, G. O., Boison, J. O., 1998. Bacterial inhibition tests used to screen for antimicrobial veterinary drug residues in slaughtered animals. J. AOAC Int. 81, 21-24.
Korsrud, G. O., Papich, M. G., Fesser, A. C. E., Salisbury, C. D. C., Macneil, J. D., 1995. Laboratry testing of the Cham Π Test receptor assays and 77 Cham Farm Test with tissues and fluids from hogs fed sulfamethazine, chlortetracycline, and penicillin G. J. Food Prot. 59, 161-166.
Kümmerer, K., 2003. Significance of antibiotics in the environment. J. Antimicrob. Chemother. 52, 5-7.
Leitner, A., Zo¨llner, P., Lindner, W., 2001. Determination of the metabolites of nitrofuran antibiotics in animal tissue by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr., A. 939, 49-58.
Lin, K., Gan, J., 2011. Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere. 83, 240-246.
Liu, Z., Song L., Yang, C., Zhang, H., 2006. Degradation of 3-amino-2-oxazolidinone (AOZ) in aqueous solutions by electron beam irradiation. Nucl. Instrum. Methods Phys. Res. 243, 109-112.
Liu, Z., Zhang, H., Liu, Y., 2007. Effect of electron irradiation on nitrofurans and their metabolites. Radiat. Phys. Chem. 76, 1903-1905.
Lunestad, B. T., Samuelsen, O. B., Fjelde, S., Ervik, A., 1995. Photostability of eight antibacterial agents in seawater. Aquaculure. 134, 217-225.
Manzetti, S., Ghisi, R., 2014. The environmental release and fate of antibiotics. Mar. Pollut. Bull. 79, 7-15.
Michael, G. E., Miday, R. K., Bercz, J. P., Miller, R. G., Greathouse, D. G., Kraemer, D. F., Lucas, J. B., 1981. Chlorine dioxide water disinfection: a prospective epidemiology study. Arch. Environ. Health. 36, 20-27.
Moffat, S. L., Byford. L., Forkert. L., 1986. Intraregional gas mixing in humans during high frequency oscillations. Respir. Physiol. 66, 95-107.
Monteiro, S. C., Boxall, A. B. A., 2009. Factors affecting the degradation of pharmaceuticals in agricultural soils. Environ. Toxicol. Chem. 28, 2546-2554.
Morris, J. E., Price, J. M., Lalich, J. J., Stein, R. J., 1969. The carcinogenic activity of some 5-nitrofuran derivatives in the rat. Cancer Res. 29, 2145-2156.
Muldoon, M. T., Holtzapple, C. K., Deshpande, S. S., Beier, R. C., Stanker, L. H., 2000. Development of a monoclonal antibody-based cELISA for the analysis of sulfadimethoxine. 1. Development and characterization of monoclonal antibodies and molecular modeling studies of antibody recognition. J. Agric. Food Chem. 48, 537-544.
Navalon, S., Alvaro, M., Garcia, H., 2008. Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β-lactam antibiotics with ClO2. Water Res. 42, 1935-1942.
Plakas, S. M., Said, K. R. E., Stehly, G. R., 1994. Furazolidone disposition after intravascular and oral dosing in the channel catfish. Xenobiotica. 24, 1095-1105.
Riely, C. M., Lough, W. J, Wainer I. W., 1996. High-performance liquid chromatography: modes of chromatography. Chapman and Hall New York, USA.
Rigos, G., Troisi, G. M., 2005. Antibacterial agents in Mediterranean finfish arming: A synopsis of drug pharmacokinetics in important euryhaline fish pecies and possible environmental implications. Rev. Fish Biol. Fisher. 15, 53-73.
Rogers, R. G., Kammerer-Doak, D., Olsen, A., Thompson, P. K., Walters, M. D., Lukacz, E. S., Qualls, C., 2004. A randomized, double-blind, placebo-controlled comparison of the effect of nitrofurantoin monohydrate macrocrystals on the development of urinary tract infections after surgery for pelvic organ prolapse and/or stress urinary incontinence with suprapubic catheterization. Am. J. Obstet. Gynecol. 191, 182-187.
Saad, B., Mohamad, R., Mohamed, N., Jab, M. S., Saleh, M. I., Lawrence, G. D., 2002. Determination of oxolinic acid in feeds and cultured fish using capillary electrophoresis. J. Food Chem. 78, 383-388.
Salmon, R. J., Buisson, J. P., Zafrani, B., Aussepe, L., Royer, R., 1986. Carcinogenic effect of 7-methoxy-2-nitro-naphtho [2, 1-b] furan (R 7000) in the forestomach of rats. Carcinogenesis. 7, 1447–1450.
Samuelsen, O. B., Solhein, E., Lunestad, B. T., 1991. Fate and microbiological effects of furazolidone in a marine aquaculture sediment. Sci. Total Environ. 108, 275-283.
Samuelsen, O. B., 2006. Pharmacokinetics of quinolones in fish: A review. Aquaculture. 255, 55-75.
Stehly, G. U., Gingerich, W. H., 1999. A bridging study for tetracycline in edible fillet of rainbow trout: analysis by a liquid chromatographic method and the official microbial inhibition assay. J. AOAC Int. 82, 886-870.
Symons, J. M., 1978. Ozone, chlorine dioxide and chloramines as alternatives to chlorine for disinfection of drinking water. Water chlorination: environmental impact and health effects. Ann. Arbor Sci. Publ., Inc., Ann Arbor, Mich. Vol. 2.
Tatsumi, K., Takahashi, Y., 1992. Metabolic fate of furazolidone in rats. Chem. Pharm. Bull. (Tokyo) 30, 3435-3438.
Wu, C., Spongberg, A. L., Witter, J. D., 2009. Sorption and biodegradation of selected antibiotics in biosolids. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 44, 454-461.
Yahagi, T., Nagao, M., Hara, K., Matsushima, T., Sugimura, T., Bryan, G. T., 1974. Relationships between the carcinogenic and mutagenic or DNA-modifying effects of nitrofuran derivatives, including 2-(2-furyl)-3-(5-nitro-2-furyl)- acrylamide, a food additive. Carncer Res. 34, 2266-2273.
Yu, W. H., Chin, T. S., Lai, H. T., 2013. Detection of nitrofurans and their metabolites in pond water and ediments by liquid chromatography (LC)-photodiode array detection and LC-ion spray tandem mass spectrometry. Int. Biodeter. Biodegr. 85, 517-526.
Zuidema, I., Mulder, P. P. J., van Rhijn, J. A., Keestra, N. G. M., Hoogenboom, L. A. P., Schat, B., Kennedy, D. G., 2005. Metabolism and depletion of nifursol in broilers. Anal. Chim. Acta. 529, 339-346.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top