跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊淳茹
研究生(外文):Chun-Ru Yang
論文名稱:類胚體供探討熱緊迫影響哺乳類動物著床後胚胎發育之體外模式
論文名稱(外文):The embryoid body as a model system to study the effect of heat stress on post-implantation development of mammalian embryos
指導教授:朱志成羅能文
指導教授(外文):Jyh-Cherng JuNeng-Wen Lo
口試委員:曾榮凱沈朋志
口試委員(外文):Jung-Kai TsengPerng-Chih Shen
口試日期:2013-01-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:81
中文關鍵詞:類胚體熱緊迫胚胎發育
外文關鍵詞:embryoid bodyheat stressembryo development
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為建立一體外培養系統供探討熱緊迫對著床後胚發育之影響,包括不同溫度與時間之熱處理對小鼠與兔類胚體(embryoid body, EB)胚層分化、熱緊迫蛋白(heat shock protein, Hsp)以及細胞凋亡等影響。試驗一,比較小鼠EB與著床後胚發育之基因表現,建立具代表性之體外著床胚發育評估模式。分別採集配種後5.5-8.5天(E5.5-8.5)之小鼠胚胎與培養1-7天之EB,以RT-PCR評估各胚層(germ layer)基因表現,藉此比對體內發育胚與EB胚層之基因表現時程。結果顯示培養後第3天EB基因表現對應於體內發育第6.5天胚胎,而培養第6天EB基因表現則可對應體內發育第7.5天胚胎。試驗二則依據試驗一之結果探討熱緊迫對小鼠EB胚層分化之影響。實驗1、以三種不同溫度(37℃、39℃或41℃)分別處理12 h與24 h (共六處理組),另兩組則先以39℃或41℃熱處理12 h後恢復至37℃培養12 h,再以TUNEL及LIVE/DEAD assay評估其細胞凋亡、Hsp72與Hsc70之表現;並將以上熱處理組之EB繼續於37℃培養至第7天,評估其三胚層標幟基因之表現。結果顯示,熱處理造成小鼠EB週邊細胞的剝落或退化,細胞凋亡之發生隨熱緊迫時間與其溫度提高而增加(P<0.05),但當恢復正常溫度並培養2-3天後,約有80%(n = 300)EB可逐漸修復其正常形態;而Hsp72在39℃與41℃熱處理組之表現量也顯著高於對照組(P<0.05)者;當41℃之處理組恢復至37℃培養12 h後,Hsp72與Hsc70之表現量則顯著降低(P<0.05)。當EB經熱緊迫後持續培養7天期間,利用RT-PCR分析其三胚層基因表現發現,中胚層標幟brachyury表現於熱處理組之時間比對照組者延遲2天,而內胚層標幟α-fetoprotein(AFP)與transthyretin(TTR)亦延遲1-2天表現。實驗2、探討輕度熱緊迫之處理,可否誘導小鼠EB增加耐熱性。將EB隨機分為八組,分別為39℃熱處理12 h(M12)與24 h(M24),41℃熱處理12 h(H12)與24 h(H24),先行以39℃熱處理12 h後再以41℃熱處理12 h(M12H12)與24 h(M12H24),以及39℃熱處理24 h再以41℃熱處理12 h(M24H12)與24 h(M24H24)。結果顯示,M24H24組之Hsp72與Caspase3之表現量皆有顯著下降之趨勢(P<0.05)。試驗三探討熱緊迫對紐西蘭白兔EB胚層分化能力之影響。實驗1、收集E9.5與E12.5兔胚胎測定其三胚層標幟基因之表現。結果顯示E9.5兔胎表現三胚層標幟基因,外胚層Pax6、中胚層Desmin及內胚層Gata4,E12.5兔胚則多表現另一中胚層標幟BMP4,證實兔胚胎與兔EB同樣具有三胚層標幟基因之表現。實驗2、探討不同溫度與時間熱處理rEB後胚層分化與細胞存活。將rEB隨機分為三組,分別為38℃對照組、39℃熱處理12 h 、41℃熱處理6 h,熱處理後觀察其rEB外觀之變化及利用LIVE/DEAD assay偵測細胞存活之百分率,並利用RT-PCR測定rEB經熱緊迫後持續培養至11天其三胚層有無延遲或提早表現。結果顯示,熱處理同樣造成兔EB週邊細胞層的剝落或退化,其嚴重程度隨熱緊迫時間延長而加劇(P<0.05)。兔EB經熱緊迫處理後,外胚層標幟基因Pax6於39℃熱處理12 h組比對照組者提早1-2天表現,中胚層標幟Desmin於41℃熱處理6 h組比對照組者延遲1-2天表現;另一中胚層標幟BMP4於39℃熱處理12 h組亦延遲1-2天表現。實驗3、評估母兔EB經熱緊迫處理後其Hsp72之表現。將EB隨機分為八組:即對照組(38℃)培養3 h(T1)、6 h(T3、T5)及12 h(T7),41℃熱處理3 h(T2)與6 h(T4),39℃熱處理6 h(T6)與12 h(T8)。結果顯示,所有熱處理組之Hsp72表現與對照組者比較皆顯著提高(P<0.05);除了T2熱處理組外,其他熱處理組間之Hsp72表現皆無顯著差異。綜合本研究發現,環境溫度提高可造成EB胚層細胞之死亡、基因表現或發育延緩以及誘導Hsp之表現。EB具有與體內胚胎相似之基因表現,可能作為探討外源性因子對著床後胚胎發育影響之體外研究模式。至於體內胚胎是否亦具有相同之生理反應與其對抗熱緊迫之機制仍待進一步研究。
The odjectives of this study were to establish an in vitro system to determine the effect of heat shock on germ layer differentiation, heat shock protein (hsp70) expression and apoptosis markers of mouse and rabbit embryoid bodies (EB). In Exp. 1, 5.5-8.5 day-old mouse fetuses and 1-7 day-old mouse EBs were collected to examine their gene expressions of the three germ layers. Results showed that Days 3 and 6 EBs are retrospectively associated with the Days 6.5 and 7.5 fetuses, respectively, in terms of the germ layer gene expressions. In Exp. 2.1, mouse EBs were subjected to heat shock and randomly allocated to one of the eight treatment groups, i.e., incubation at 37℃ for 12 h or 24 h, heat-shock at 39℃ for 12 h or 24 h, heat-shock at 41℃ for 12 h or 24 h, incubation at 37℃ for 12 h following 39℃ or 41℃ (12 h) of heat-shock treatment. TUNEL and LIVE/DEAD assays were used to inspect apoptosis of EB and western blotting for the expressions of heat shock proteins (Hsc70 and Hsp72). Our observations showed that the peripheral cell layer of EBs started to degenerate and significantly increased the apoptotic cells after heat-shock at 41℃ for 12 h or 24 h (P < 0.05). When resumed to a normal culture temperature (37℃), EBs morphologically recovered from the damages progressively during further culture. The changes of gene expression in the germ layers after various treatments, namely, timing for the expressions of mesoderm marker Brachyury and the endoderm markers, α-fetoprotein (AFP) and Transthyretin (TTR), were set back for 1-2 days in the heat-shocked groups compared to the control group. In another experiment (Exp. 2.2), we determinated whether a mild heat shock could enhance thermotolerance of mEB when followed by another more severe heat shock. Mouse EBs were randomly allocated to one of the eight treatment groups, i.e., heat-shock at 39℃ for 12 h (M12) or 24 h (M24), heat-shock at 41℃ for 12 h (H12) or 24 h (H24), incubation for 12 h at 39℃ and heat-shock at 41℃for 12 h (M12H12) or 24 h (M12H24), and incubation for 24 h at 39 ℃ and heat-shock at 41 ℃ for 12 h (M24H12) or 24 h (M24H24). Results showed the expression of Casepase3 and Hsp70 were significantly decreased in the M24H24 group (P<0.05). In Exp. 3., we tested the effect of heat shock on the germ layer differentiation of rabbit EB,apoptosis cells and Hsp72 expression. Similar results were also observed as that in mouse EB, where the peripheral cellular layer started to degenerate and significant increased apoptosis cells after heat shock (P<0.05). Hsp72 expression significantly increased with the increases of temperatures and treatment duration. Timing for the expressions of mesoderm marker Desmin and BMP4 were also set back for 1-2 days in the heat-shocked groups (41℃) compared to the control group, but ectoderm marker Pax6 expressed 1-2 days earlier in the 39℃ heated group than the control group. Based on our current observation, we conclude that EB are similar to in vivo developing embryos in terms of their germ layer marker expression. They can be a potential model system for the study of various environmental insults to post-implantation embryos. In general, in vitro heat shock delays the expressions of germ layer marker genes of EBs, but enhances Hsp72 expressions in both mouse and rabbit systems. Further in vivo studies are required to confirm the physiologic alterations of embryo/fetus in response to the elevation of ambient temperatures.
目次
頁次
文獻檢討-----------------------------------------------------------------------------1
前言------------------------------------------------------------------------------------------------2
一、早期胚胎之發育---------------------------------------------------------------2
(一) 囊胚至原腸前期胚之發育---------------------------------------------------2
(二) 原腸期胚之發育-------------------------------------------------------------3
二、早期胚胎之基因表現與訊息傳遞----------------------------------------------5
三、類胚體之形成------------------------------------------------------------------8
四、熱緊迫---------------------------------------------------------------------------13
(一) 熱緊迫對早期胚發育之影響---------------------------------------------------------13
(二) 熱緊迫對胚胎發育之影響---------------------------------------------------13
(三) 熱緊迫蛋白------------------------------------------------------------------14
(四) 熱緊迫與細胞凋亡-----------------------------------------------------------15
試驗一、小鼠胚胎與類胚體三胚層基因標幟之表現-------------------------------18
一、前言------------------------------------------------------------------------------------------18
二、材料與方法---------------------------------------------------------------------------------18
三、試驗設計------------------------------------------------------------------------------------25
四、結果------------------------------------------------------------------------------------------25
五、討論------------------------------------------------------------------------------------------31
試驗二、不同溫度與處理時間之熱緊迫對小鼠類胚體胚層分化之影響---------33
一、前言------------------------------------------------------------------------------------------33
二、材料與方法---------------------------------------------------------------------------------34
三、試驗設計------------------------------------------------------------------------------------38
四、統計分析------------------------------------------------------------------------------------39
五、結果------------------------------------------------------------------------------------------39
六、討論------------------------------------------------------------------------------------------51
試驗三、不同溫度與處理時間之熱緊迫對紐西蘭白兔類胚體胚層分化之影響----53
一、前言------------------------------------------------------------------------------------------53
二、材料與方法---------------------------------------------------------------------------------53
三、試驗設計------------------------------------------------------------------------------------57
四、統計分析------------------------------------------------------------------------------------57
五、結果------------------------------------------------------------------------------------------57
六、討論------------------------------------------------------------------------------------------64
結論------------------------------------------------------------------------------------------------65
參考文獻------------------------------------------------------------------------------------------66
參考文獻

Adamson, E. D., S. Strickland, M. Tu, and B. Kahan. 1985. A teratocarcinoma-derived
endoderm stem cell line (1H5) that can differentiate into extra-embryonic
endoderm cell types. Differentiation 29: 68–76.
Agius, E., M. Oelgeschlager, O. Wessely, C. Kemp, and E. M. De Robertis. 2000.
Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127:1173–1183.
Ai-Katani, Y. M., F. F. Paula-Lopes, and P. J. Hansen. 2002. Effect of season and exposure to heat stress on oocyte competence in Holstein cows. J. Dairy Sci. 85: 390–396.
Alexander, G., J. R. S. Hales, D. Stevens, and J. B. Donnelly. 1987. Effects of acute
and prolonged exposure to heat on regional blood flows in pregnant sheep. J. Dev.Physiol. 9: 1–15.
Are’chiga, C. F., and P. J. Hansen. 1998. Response of preimplantation murine embryos to heat shock as modified by developmental stage and glutathione status. In Vitro
Cell Dev. Biol. Anim. 34: 655–659.
Bachiller, D., J. Klingensmith, C. Kemp, J. A. Belo, R. M. Anderson, S. R. May, J. A. McMahon, A. P. McMahon, R. M. Harland, J. Rossant, and E. M. De-Robertis. 2000. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403: 658–661.
Bader, A., A. Gruss, A. Hollrigl, H. Al-Dubai, Y. Capetanaki, and G. Weitzer . 2001. Paracrine promotion of cardiomyogenesis in embryoid bodies by LIF modulated endoderm. Differentiation 68: 31–43.
Bader, A., H. Al-Dubai, and G. Weitzer. 2000. Leukemia inhibitory factor modulates cardiogenesis in embryoid bodies in opposite fashions. Circ. Res. 86: 787–794.
Baker, J.C., R. S. Beddington, and R. M.Harland. 1999. Wnt signaling in Xenopus
embryos inhibits bmp4 expression and activates neural development. Genes Dev. 13: 3149–3159.
Becker, J., and E. A. Craig. 1994. Heat shock proteins as molecular charperones. Eur. J. Biochem. 219: 11–23.
Bensaude, O., C. Babinct, M. Morange, and F. Jacob. 1983. Heatshock proteins, first
major products of zygotic gene activity in the mouse embryo. Nature 305:331–333.
Beppu, H., M. Kawabata, and T. Hamamoto. 2000. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev. Biol. 221: 249–258.
Bottcher, R. T., and C. Niehrs. 2005. Fibroblast growth factor signaling during early
vertebrate development. Endocr Rev. 26:63–77.
Bradley, A., M. Evans, M. H. Kaufman, and E. Robertson. 1984. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255–256.
Brennan, J., C. C. Lu, D. P. Norris, T. A. Rodriguez, R. S. Beddington, E. J. Robertson.
2001. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411:965–969.
Brison, D. R., and R. M. Schultz. 1997. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor. Biol. Reprod. 56:1088–1096
Broker, L.E., Kruyt, F.A., and Giaccone, G. (2005) Cell death independent of caspases: a review. Clin. Cancer Res., 11, 3155–3162.
Brown, C. R., R. L. Martin, W. J. Hansen, R. P. Beckmann, and W. J. Welsh. 1993. The constitutive and stress inducible forms of hsp70 exhibit functional similarities and interact ith one another in an ATP-dependent fashion. J. Cell Biol. 120: 1101–1112.
Chen, Y., X. Li, V. P. Eswarakumar, R. Seger, and P. Lonai. 2000. Fibroblast growth factor (FGF) signaling through PI 3-kinase and Akt/PKB is required for embryoid body differentiation. Oncogene 19: 3750–3756.
Chinzei, R., Y. Tanaka, K. Shimizu-Saito, Y. Hara, S. Kakinuma, M. Watanabe, K.
Teramoto, S. Arii, K. Takase, C. Sato, N. Terada, and H. Teraoka. 2002. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 36:22–9.
Choi, D., H. J. Lee, S. Jee, S. Jin, S. K. Koo, S. S. Paik, S. C. Jung, S. Y. Hwang, K. S.
Lee, and B. Oh. 2005. In vitro differentiation of mouse embryonic stem cells: enrichment of endodermal cells in the embryoid body. Stem Cells 23:817–827.
Choi, Y. Y., B. G. Chung, D. H. Lee, A. Khademhosseini, J. H. Kim, and S.H. Lee. 2010. Controlled-size embryoid body formation in concave microwell arrays.Biomaterials 31: 4296–4303.
Clarke, A. R. 1996. Molecular chaperones in protein folding and translocation. Curr Opin. Struct. Biol. 6: 43–50.
Collier, R. J., S. G. Doelger, H. H. Head, W.W. Thatcher, and C. J. Wilcox. 1982. Effects of heat stress during pregnancy on maternal hormone concentrations, calf birth weight and postpartum milk yield of Holstein cows. J. Anim. Sci. 54: 309–319.
Collignon, J., I. Varlet, and E. J. Robertson. 1996. Relationship between asymmetric
nodal expression and the direction of embryonic turning. Nature 381:155–158.
Colognato, H., and P.D. Yurchenco. 2000. Form and function: the laminin family of heterotrimers. Dev. Dyn. 218:213–234.
Conlon, F. L., K. M. Lyons, and N. Takaesu. 1994. A primary requirement for nodal in
the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928.
Crossley, P. H., and G. R. Martin. 1995. The mouse Fgf8 gene encodes a family of
polypeptides and is expressed in regions that direct outgrowth and patterningin the developing embryo. Development 121:439–451.
Delaune, E., P. Lemaire, and L. Kodjabachian. 2005. Neural induction in Xenopus
requires early FGF signalling in addition to BMP inhibition. Development 132: 299–310.
Doetschman, T. C., H. Eistetter, M. Katz, W. Schmidt, and R. Kemler. 1985. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87: 27–45.
Duncan, R.F., and J. W. B. Hershey. 1989. Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation. J. Cell. Biol. 109, 1467–1481.
Dutt, R. H. 1964. Detrimental effects of high ambient temperature on fertility and early embryo survival in sheep. Int. J. Biometeorol. 8: 47–56.
Dvash, T., Y. Mayshar, H. Darr, M. McElhaney, D. Barker, O. Yanuka, K. J. Kotkow,
L. L. Rubin, N. Benvenisty, and R. Eiges. 2004. Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum. Reprod. 19: 2875–2883.
Ealy, A. D., M. Drost, and P. J. Hansen. 1993. Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. J. Dairy Sci. 76: 2899–2905.
Ealy, A. D., J. L. Howell, V. H. Monterroso, C. F. Arechiga, P. J. Hansen. 1995.
Developmental changes in sensitivity of bovine embryos to heat shock and use of antioxidants as thermoprotectants. J. Anim. Sci. 73:1401–1407.
Edwards, J. L., A. D. Ealy, and P. J. Hansen. 1995. Regulation of heat shock protein 70 synthesis by heat shock in the preimplantation murine embryo and its relationship to induced thermotolerance. Theriogenology 44: 329–337.
Edwards, J. L., and P. J. Hansen. 1996. Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes. Biol. Reprod. 55: 340–346.
Edwards, J. L., and P. J. Hansen. 1997. Differential responses of bovine oocytes and preimplantation embryos to heat shock. Mol. Reprod. Dev. 46: 138–145.
Edwards J. L., W. A. King, S. J. Kawarsky, and A.D. Ealy 2001. Response of early embryos to environmental insults: potential protective roles of HSP70 and glutathione. Theriogenology 55, 209–223.
Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol Pathol.
35:495–516.
Evans, M. J., and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156.
Finley, M. F., S. Devata, and J. E. Huettner. 1999. BMP-4 inhibits neural differentiation of murine embryonic stem cells. J. Neurobiol. 40: 271–287.
Gadue, P., T. L. Huber, M. C. Nostro, S. Kattman, and G. M. Keller. 2005. Germ layer induction from embryonic stem cells. Exp. Hematol. 33: 955–964.
Gardner, R. L. 1983. Origin and differentiation of extra-embryonic tissues in the mouse.
Int. Rev. Exp. Pathol. 24: 63–133.
Gadue, P. T. L. Huber, P. J. Paddison, and G. M. Keller. 2006. Wnt and TGF-beta
signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl. Acad. Sci. 103:16806–16811.
Galan Jr, H. L., M. J. Hussey, A. Barbera, E. Ferrazzi, M. Chung, J. C. Hobbins and F. C. Battaglia. 1999. Relationship of fetal growth to duration of heat stress in an ovine model of placental insufficiency. Am. J. Obstet. Gynecol. 180: 1278–1282.
Gardner, R. L. 1983. Origin and differentiation of extra-embryonic tissues in the mouse. Int. Rev. Exp. Pathol. 24: 63–133.
Gerecht-Nir, S., S. Cohen, and J. Itskovitz-Eldor. 2004. Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioeng. 86:493–502.
Glinka, A., W. Wu, D. Onichtchouk, C. Blumenstock, and C. Niehrs. 1997. Head
induction by simultaneous repression of Bmp and Wnt signalling in Xenopus.Nature 389:517–519.
Grabel, L. B., and J. E. Casanova. 1986. The outgrowth of parietal endodermfrommouse teratocarcinoma stem-cell embryoid bodies. Differentiation 32: 67–73.
Grabel, L. B., and T. D. Watts. 1987. The role of extracellular matrix in the migration and differentiation of parietal endoderm from teratocarcinoma embryoid bodies. J. Cell Biol. 105: 441–448.
Graham, J. M., M. J. Edwards, and M. J. Edwards. 1998. Teratogen update: gestational effects of maternal hyperthermia due to febrile illnesses and resultant patterns of defects in humans. Teratology 58: 209–221.
Gratsch, T. E., and K. S. O’Shea. 2002. Noggin and chordin have distinct activities in promoting lineage commitment of mouse embryonic stem (ES) cells. Dev. Biol. 245: 83–94.
Griffin, K. J., S. L. Amacher, C. B. Kimmel, D. Kimelman. 1998. Molecular
identification of spadetail: regulation of zebrafish trunk and tail mesodermformation by T-box genes. Development 125:3379–3388.
Gwazdauskas, F. C., C. McCaffrey, T. G. McEvoy, and J. M. Sreenan. 1992. In vitro
preimplantation mouse embryo development with incubation temperatures of 37 and 39℃. J. Assist. Reprod. Genet. 9:149–154.
Hansen, P. J. 2009. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. Lond. 364: 3341–3350.
Hardy, K. 1999. Apoptosis in the human embryo. Rev. Reprod. 4:125–134.
Hatayama, T., T. Takigawa, S. Takeuchi, and K. Shiota. 1997. Characteristic expression of high molecular mass heat shock protein hspl05 during mouse embryo development. Cell Struct. Funct. 22: 517–525.
Heldmaier, G., S. Ortmann, and R. Elvert. 2004. Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141: 317–329.
Heng, B. C., K. J. Vinoth, K. Lu, X. Deng, Z. Ge, B. H. Bay, and T. Cao. 2007. Prolonged exposure of human embryonic stem cells to heat shock induces necrotic cell death. Biocell 31: 405–410.
Hogan, B. L., and R. Tilly. 1981. Cell interactions and endoderm differentiation in cultured mouse embryos. J. Embryol. Exp. Morphol. 62: 379–394.
Ikeda, W., H. Nakanishi, J. Miyoshi, K. Mandai, H. Ishizaki, M. Tanaka, A. Togawa, K. Takahashi, H. Nishioka, H. Yoshida, A. Mizoguchi, S. Nishikawa, and Y. Takai. 1999. Afadin: a key molecule essential for structural organization of cell–cell junctions of polarized epithelia during embryogenesis. J. Cell. Biol. 146: 1117–1131.
Inman, K. E., and K. M. Downs. 2006. Localization of Brachyury (T) in embryonic and
extraembryonic tissues during mouse gastrulation. Gene Expr. Patterns 6:783–93.
Isom, S. C., R. S. Prather, and E. B. Rucker III. 2007. Heat stress-induced apoptosis in porcine in vitro fertilized and parthenogenetic preimplantation-stage embryos. Mol. Reprod. Dev. 74: 574–581.
Itskovitz-Eldor, J., M. Schulding, and D. Karsenti. 2000. Differentiation of human
embryonic stem cells into embryoid bodies comprising the three embryonic germlayers. Mol. Med. 6:88–95.
Jacobson, M. D., M. Weil, and M. C. Raff. 1997. Programmed cell death in animal development. Cell 88: 347–354.
Jardine, D. S. 2007. Heat illness and heat stroke. Pediatr. Rev. 28: 249–258.
Johansson, B. M., and M. V. Wiles. 1995. Evidence for involvement of activin A and
bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell Biol. 15:141–151.
Ju, J. C. 1991. The effect of heat shock on the developmental competence and activation.
Cornell USA, Ph. D. Thesis.
Ju, J. C., S. Jiang, J. K. Tseng, J. E. Parks, and X. Yang. 2005. Heat shock reduces
developmental competence and alters spindle configuration of bovine oocytes.
Theriogenology 64:1677–1689.
Jurisicova, A., K. E. Latham , R. F.Casper, R. F. Casper,and S. L.Varmuza. 1998. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol. Reprod. Dev. 51:243–253.
Kerr, J. F., A. H. Wyllie, and A. R. Currie. 1972. Apoptosis: a basic biological
phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239 –257.
Kinder, S. J., T. E. Tsang, and G. A. Quinlan. 1999. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126: 4691–4701.
Koike, M., S. Sakaki, Y. Amano, and H. Kurosawa. 2007. Characterization of embryoid
bodies of mouse embryonic stem cells formed under various culture conditions and estimation of differentiation status of such bodies. J. Biosci. Bioeng. 104:294–299.
Konno, T., K. Akita, K. Kurita, and Y. Ito. 2005. Formation of embryoid bodies by mouse embryonic stem cells on plastic surfaces. J. Biosci. Bioeng. 100: 88–93.
Krininger III, C. E., S. H. Stephens, and P. J. Hansen. 2002. Developmental changes in inhibitory effects of arsenic and heat shock on growth of preimplantation bovine embryos. Mol. Reprod. Dev. 63: 335–340.
Kubo, A., K. Shinozaki, and J. M. Shannon. 2004. Development of definitive endoderm
from embryonic stem cells in culture. Development 131:1651–1662.
Kurosawa, H. 2007. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J. Biosci. Bioeng. 103: 389–398
Lavy, G., M. P. Diamond, A. Pellicer, and W. K. Vaughn. 1988. The effect of the incubation temperature on the cleavage rate of mouse embryos in vitro. J. In Vitro Fert. Embryo Transfer 5:167–170.
Lawson, K. A., N. R. Dunn, B. A. Roelen, L. M. Zeinstra, A. M. Davis, C. V. Wright, J. P. Korving, and B. L. M. Hogan. 1999. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13:424–436.
Leahy, A., J. W. Xiong, F. Kuhnert, and H. Stuhlmann. 1999. Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J. Exp. Zool 284: 67–81.
Li, L., E. Arman, and P. Ekblom. 2004. Distinct GATA6- and laminindependent
mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Development 131:5277–5286.
Li, S., D. Harrison, S. Carbonetto, R. Fassler, N. Smyth, D. Edgar, and P.D. Yurchenco. 2002. Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J. Cell Biol. 157:1279–1290.
Li, X., Y. Chen, and S. Scheele. 2001. Fibroblast growth factor signaling and basement
membrane assembly are connected during epithelial morphogenesis of the embryoid body. J. Cell Biol. 153:811–822.
Lin, P. S., S. Quamo, K. C. Ho, and J. Gladding. 1991. Hyperthermia enhances the
cytotoxic effects of reactive oxygen species to Chinese hamster cells and bovine endothelial cells in vitro. Radiation Res.126:43–51.
Lindquist, S. 1986. The heat shock response. Annu. Rev. Biochem. 55: 1151–1191.
Lindsley, R.C., J. G. Gill, M. Kyba, T. L. Murphy, and K. M. Murphy. 2006. Canonical
Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 133:3787–3796.
Liu, P., M. Wakamiya, and M. J. Shea. 1999. Requirement for Wnt3 in vertebrate axis
formation. Nat. Genet. 22:361–365.
Lu, C.C., J. Brennan, and E. J. Robertson. 2001. From fertilization to gastrulation: Axis formation in the mouse embryo. Curr. Opin. Genet. Dev. 11: 384–392.
Majno, G., and I. Joris. 1995. Apoptosis, oncosis, and necrosis. An overview of cell
death Am. J. Pathol. 146:3–16.
Makarevich, A. V., L. Olexikova, P. Chrenek, E. Kubovicova, K. Freharova, and J.
Pivko. 2007. The effect of hyperthermia in vitro on vitality of rabbit preimplantation embryos. Physiol. Res. 56: 789–796.
Matsuzuka, T., M. Ozawa, M. Hirabayashi, A. Ushitani, and Y. Kanai. 2004.
Developmental competence and glutathione content of maternally heat-stressed mouse oocytes and zygotes. Animal Science Journal 75:117–124.
Matwee, C., D. H. Betts, and W. A. King. 2000. Apoptosis in the early bovine embryo.
Zygote 8:57–68.
Matwee, C., M. Kamaruddin, D. H. Betts, P. K. Basrur, and W. A. King. 2001. The
effects of antibodies to heat shock protein 70 in fertilization and embryo development. Molec. Hum. Reprod. 9:829-837.
Maurer, J., B. Nelson, G. Cecena, R. Bajpai, M. Mercola, A. Terskikh, R. G. Oshima.
2008. Contrasting expression of keratins in mouse and human embryonic stem cells. PLoS. ONE. 3:3451.
McGuire, M. A., D. K. Beede, R. J. Collier, F. C. Buonomo, M. A. DeLorenzo, C. J. Wilcox, G. B. Huntington, C. K. Reynolds. 1991. Effects of acute thermal stress and amount of feed intake on concentrations of somatotropin, insulin-like growth factor (IGF)-1 and IGF-II, and thyroid hormones in plasma of lactating Holstein cows. J Anim Sci. 69: 2050–2056.
Miki, K. 1999. Volume of liquid below the epithelium of an F9 cell as a signal for differentiation into visceral endoderm. J. Cell. Sci. 112: 3071–3080.
Mishina, Y., A. Suzuki, N. Ueno, and R. R. Behringer. 1995. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev. 9: 3027–3037.
Mogi, A., H. Ichikawa, C. Matsumoto, T. Hieda, D. Tomotsune, S. Sakaki, S. Yamada,
and K. Sasaki. 2009. The method of mouse embryoid body establishment affects structure and developmental gene expression. Tissue Cell 41:79-84.
Moore, K. L., and T. V. N. Persaud 2001. The Developing Human: Clinically Oriented Embryology (6th ed.), pp. 47–58 in Formation of Bilaminar Embryonic Disc and Chorionic Sac .W.B. Saunders Company, Philadelphia.
Mosser, D. D., A. W. Caron, L. Bourget, A. B. Meriin, M. Y. Sherman, R. I. Morimoto, B. Massie. 2000. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell Biol. 20: 7146–7159.
Monty, D. E., and C. Racowsky. 1987. In vitro evaluation of early embryo viability and development in summer heat-stressed, superovulated dairy cows. Theriogenology 28: 451–465.
Morange, M., A. Diu, O. Bensaude, and C. Babinet. 1984. Altered expression of heat
shock proteins in mouse embryonal carcinoma cells and mouse early embryonic cells. Molec. Cell Biol. 4:730–735.
Nakaya, Y., and G. Sheng. 2008. Epithelial to mesenchymal transition during
gastrulation: an embryological view. Dev. Growth Differ. 50:755–766.
Niwa, H., J. Miyazaki, and A. G. Smith. 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24: 372–376.
Ng, E. S, L. Azzola, and K. Sourris. 2005. The primitive streak gene Mixl1 is required for efficient haematopoiesis and BMP4-induced ventral mesoderm patterning in differentiating ES cells. Development 132: 873–884.
Olexikova, L., A. V. Makarevich, J. Pivko, and P. Chrenek. 2010. Antibody to Hsp70
alters response of rabbit preimnplantation embryos to hyperthermia in vitro. Anim. Reprod. Sci. 119:130–136.
Omtvedt, I. T., R. E. Nelson, and R. L. Edwards. 1967. Influence of heat stress during
early, mid and late pregnancy of gilts. J. Anim. Sci. 32:312.
Orr-Urtreger, A., D. Givol, A. Yayon, Y. Yarden, and P. Lonai. 1991. Developmental
expression of two murine fibroblast growth factor receptors, flg and bek. Development 113:1419–1434.
Parameswaran, M., and P. P. Tam. 1995. Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev. Genet. 17: 16–28.
Park. C., I. Afrikanova, and Y. S. Chung. 2004. A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development. 131: 2749–2762.
Parsell, D.A., and S. Lindquist. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437–96.
Paula-Lopes, F. F., and P. J. Hansen. 2002. Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon. Biol. Reprod. 66: 1169–1177.
Pera, M.F., J. Andrade, S. Houssami, B. Reubinoff, A. Trounson, E. G. Stanley, D. Ward-van Oostwaard, and C. Mummery. 2004. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci. 117: 1269–1280.
Peyron, A. 1939. Faits nouveaux relatifs a l’origine et a l’histogenese des embryomes. Bull Assoc. Franc. Etude. Cancer 28: 658–681.
Prosser, C. L., and J. E. Heath. 1991 Temperature. In Comparative animal physiology, pp. 109–166 in environmental and metabolic animal physiology (ed. C. L. Prosser), 4th edn. New York, NY: John Wiley & Sons.
Qin, J., X. Guo, and G. H. Cui. 2009. Cluster characterization of mouse embryonic stem
cell-derived pluripotent embryoid bodies in four distinct developmental stages. Biological 37:235–244.
Ozawa, M., M. Hirabayashi, and Y. Kanai. 2002. Development competence and
oxidative state of mouse zygotes heat-stressed maternally or in vitro. Reproduction 124: 683–689.
Sisken, J. E., L. Morasca, and S. Kibby: 1975. Effects of temperature on the kinetics of the mitotic cycle of mammalian cells in culture. Exp Cell Res. 39:103-107.
Smith, J.C., B. M. Price, J. B. Green, D. Weigel, B. G. Herrmann. 1991. Expression of a
Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67:79–87.
Smyth, N., H. S. Vatansever, P. Murray, M. Meyer, C. Frie, M. Paulsson, and D. Edgar.
1999. Absenceof basement membranes after targeting the LAMC1 gene results in embryonic lethalitydue to failure of endoderm differentiation. J. Cell Biol. 144:151–160.
Snow, M. H. L. 1976. Embryo growth during the immediate postimplantation period. In Embryogenesis in Mammals. Ciba. Fdn. Symp. 40: 53–70.
Streit, A., A. J. Berliner, C. Papanayotou, A. Sirulnik, and C. D. Stern. 2004. Initiation
of neural induction by FGF signalling before gastrulation. Nature 406:74–78.
Tam, P. P., and J. M. Gad. 2004. Gastrulation in the mouse embryo. In: Stern CD, ed. Gastrulation. Cold Spring Harbor Laboratory Press p. 233–262.
Tam, P. P., and D. A. Loebel. 2007. Gene function in mouse embryogenesis: get set for
gastrulation. Nat. Rev. Genet. 8:368–381.
Thureen, P. J., K. A. Trembler, G. Meschia, E. L. Makowski, and R. B. Wilkening. 1992. Placental glucose transport in heat-induced fetal growth retardation. Am. J. Physiol. 263: 578–585.
Tseng, J. K., P. C. Tang, and J. C. Ju. 2006. In vitro thermal stress induces apoptosis
and reduces development of porcine parthenotes. Theriogenology 66:1073–1082.
Vaha-Eskeli, K., and R. Erkkola. 1991. The effect of short-term heat stress on uterine contractility, fetal heart rate and fetal movements at late pregnancy. Eur J. Obstet. Gynecol. Reprod. Biol. 38: 9–14.
Varlet, I., J. Collignon, and E. J. Robertson. 1997. Nodal expression in the primitive
endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124:1033–1044.
Wallace, J. M., T. R. Regnault, S. W. Limesand, W. W. Hay, and R. V. Anthony. 2005. Investigating the causes of low birth weight in contrasting ovine paradigms. J. Physiol. 565: 19–26.
Walsh, D. A., N. W. Klein, L. E. Hightower, and M. J. Edwards. 1987. Heat shock and thermotolerance during early rat embryo development. Teratology 36: 181–191.
Warner, C. M., G. E. Exley, A. S. McElhinny, and C. Tang. 1998. Genetic regulation of
preimplantation mouse embryo survival. J. Exp. Zool. 282:272–279.
Weinstein, D. C., and A. Hemmati-Brivanlou. 1999. Neural induction. Annu. Rev. Cell Dev. Biol. 15: 411–433.
Weitzer, G. 2006. Embryonic stem cell-derived embryoid bodies: An in vitro model of eutherian pregastrulation development and early gastrulation. Handb. Exp. Pharmacol. 174: 21–51.
Welch, W. J. 1992. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol. Rev. 72: 1063–1081.
Wilkinson, D. G., S. Bhatt, and B. G. Herrmann. 1990. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343: 657–659.
Wilson, P. A., and A. Hemmati-Brivanlou. 1995. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376: 331–333.
Wilson, S. I., A. Rydstrom, T. Trimborn, K. Willert, R. Nusse, T. M. Jessell, and T.
Edlund. 2001. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411:325–330.
Wilson, S. I., E. Graziano, R. Harland, T. M. Jessell, and T. Edlund. 2000. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10: 421–429.
Winnier, G., M. Blessing, P. A. Labosky, and B. L. Hogan. 1995. Bone morphogenetic
protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9: 2105–2116.
Wittig, S., S. Hensse, C. Keitel, C. Elsner, and B. Wittig. 1983. Heat shock gene
expression is regulated during teratocarcinoma cell differentiation and early embryo development. Dev. Biol. 96:507–514.
Ying, Q. L., J. Nichols, I. Chambers, and A. Smith. 2003. BMP induction of Id proteins
suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292.
Zavy, M. T. 1994. Embryonic mortality in cattle. Embryonic mortality in domestic
species. Boca Raton: pp.99-140.
Zhou, J., Y. Zhang, Q. Lin, Z. Liu, H. Wang, C. Duan, Y. Wang, T. Hao, K. Wu, and C.
Wang. 2010. Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds. J. Genet. Genomics. 37:451–60.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top