|  | 
1.    Ventola, C.L., The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and Therapeutics, 2015. 40(4): p. 277.2.    Harder, J. and J.-M. Schröder, Antimicrobial peptides: role in human health and disease. 2015: Springer.
 3.    De la Fuente-núñez, C., et al., Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacology & therapeutics, 2017. 178: p. 132-140.
 4.    Bahar, A.A. and D. Ren, Antimicrobial peptides. Pharmaceuticals, 2013. 6(12): p. 1543-1575.
 5.    Zhang, L.-J. and R.L. Gallo, Antimicrobial peptides. Current Biology, 2016. 26(1): p. R14-R19.
 6.    Jenssen, H., P. Hamill, and R.E. Hancock, Peptide antimicrobial agents. Clinical microbiology reviews, 2006. 19(3): p. 491-511.
 7.    Silva, O., et al., An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Scientific reports, 2016. 6: p. 35465.
 8.    Anunthawan, T., et al., Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2015. 1848(6): p. 1352-1358.
 9.    Haney, E.F., et al., High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides, 2015. 71: p. 276-285.
 10.    Bhadra, P., et al., AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Scientific reports, 2018. 8(1): p. 1697.
 11.    Chang, K.Y., et al., Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields. PloS one, 2015. 10(3): p. e0119490.
 12.    Wang, G., X. Li, and Z. Wang, APD3: the antimicrobial peptide database as a tool for research and education. Nucleic acids research, 2015. 44(D1): p. D1087-D1093.
 13.    Waghu, F.H., et al., CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic acids research, 2015. 44(D1): p. D1094-D1097.
 14.    Lee, H.-T., et al., A large-scale structural classification of antimicrobial peptides. BioMed research international, 2015. 2015.
 15.    Meher, P.K., et al., Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Scientific reports, 2017. 7: p. 42362.
 16.    Thomas, S., et al., CAMP: a useful resource for research on antimicrobial peptides. Nucleic acids research, 2009. 38(suppl_1): p. D774-D780.
 17.    Fan, L., et al., DRAMP: a comprehensive data repository of antimicrobial peptides. Scientific reports, 2016. 6: p. 24482.
 18.    Qureshi, A., et al., AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic acids research, 2013. 42(D1): p. D1147-D1153.
 19.    Tyagi, A., et al., CancerPPD: a database of anticancer peptides and proteins. Nucleic acids research, 2014. 43(D1): p. D837-D843.
 20.    Mehta, D., et al., ParaPep: a web resource for experimentally validated antiparasitic peptide sequences and their structures. Database, 2014. 2014: p. bau051.
 21.    Thakur, N., A. Qureshi, and M. Kumar, AVPpred: collection and prediction of highly effective antiviral peptides. Nucleic acids research, 2012. 40(W1): p. W199-W204.
 22.    Manavalan, B., et al., MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget, 2017. 8(44): p. 77121.
 23.    Agrawal, P., et al., In silico approach for prediction of antifungal peptides. Frontiers in microbiology, 2018. 9: p. 323.
 24.    Xiao, X., et al., iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Analytical biochemistry, 2013. 436(2): p. 168-177.
 25.    Lin, W. and D. Xu, Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types. Bioinformatics, 2016. 32(24): p. 3745-3752.
 26.    Chen, W., et al., iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 2016. 7(13): p. 16895.
 27.    Lata, S., N.K. Mishra, and G.P. Raghava, AntiBP2: improved version of antibacterial peptide prediction. BMC bioinformatics, 2010. 11(1): p. S19.
 28.    Tyagi, A., et al., In silico models for designing and discovering novel anticancer peptides. Scientific reports, 2013. 3: p. 2984.
 29.    Consortium, U., UniProt: the universal protein knowledgebase. Nucleic acids research, 2016. 45(D1): p. D158-D169.
 30.    Li, W. and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006. 22(13): p. 1658-1659.
 31.    Vens, C., M.-N. Rosso, and E.G. Danchin, Identifying discriminative classification-based motifs in biological sequences. Bioinformatics, 2011. 27(9): p. 1231-1238.
 32.    Cao, D.-S., Q.-S. Xu, and Y.-Z. Liang, propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics, 2013. 29(7): p. 960-962.
 33.    Chou, K.C., Prediction of protein cellular attributes using pseudo‐amino acid composition. Proteins: Structure, Function, and Bioinformatics, 2001. 43(3): p. 246-255.
 34.    Pedregosa, F., et al., Scikit-learn: Machine learning in Python. Journal of machine learning research, 2011. 12(Oct): p. 2825-2830.
 35.    Han, J., J. Pei, and M. Kamber, Data mining: concepts and techniques. 2011: Elsevier.
 
 |