|
1Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel, B. T., Hoh, E., Karapanagioti, H. K., Thompson, R. C. (2013). Policy: Classify plastic waste as hazardous. Nature. 494(7436), 169-171. 2「塑」人之亂-「袋」走我們的地球和健康 (2014)-台灣環境資訊協會 (TEIA) 3Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M. E., Goïc, N. L., Quillien, V., Mingant, C., Epelboin, Y., Corporeau, C., Guyomarch, J., Robbens, J., Paul-Pont, I., Soudant, P., Huvet, A. (2016). Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. U. S. A. 113, 2430-2435. 4Anderson, A. J., Dawes, E. A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Mol. Biol. Rev. 54, 450-472. 5Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int. J. Biol. Macromol. 89, 161-174. 6Solaiman, D. K., Ashby, R. D. (2005). Rapid genetic characterization of poly(hydroxyalkanoate) synthase and its applications. Biomacromolecules 6, 532-537. 7Rehm, B. H. (2003). Polyester synthases: natural catalysts for plastics. Biochem. J. 376, 15-33. 8Escapa, I., García, J., Bühler, B., Blank, L., Prieto, M. (2012). The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Environ. Microbiol. 14, 1049-1063. 9Sudesh, K., Abe, H., Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. polym. sci. 25, 1503-1555. 10Castilho, L. R., Mitchell, D. A., Freire, D. M. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour. Technol. 100, 5996-6009. 11Bozell, J. J., Moens, L., Elliott, D., Wang, Y., Neuenscwander, G., Fitzpatrick, S., Bilski, R. J., Jarnefeld, J. (2000). Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recycling 28, 227-239. 12Jaremko, M., Yu, J. (2011). The initial metabolic conversion of levulinic acid in Cupriavidus necator. J. Biotechnol. 155, 293-298. 13Dworkin, M. (2006). The Prokaryotes: Vol. 5: Proteobacteria: Alpha and Beta Subclasses (Springer Science & Business Media). 14Das, S., Noe, J. C., Paik, S., Kitten, T. (2005). An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J. Microbiol. Methods 63, 89-94. 15Jendrossek, D., Pfeiffer, D. (2014). New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly (3-hydroxybutyrate). Environ. Microbiol. 16, 2357-2373. 16Rehm, B. H. In This Section-Polyhydroxyalkanoates. AOCS Lipid Library. 17Mukai, K., Yamada, K., Doi, Y. (1993). Kinetics and mechanism of heterogeneous hydrolysis of poly [(R)-3-hydroxybutyrate] film by PHA depolymerases. Int. J. Biol. Macromol. 15, 361-366. 18Wieczorek, R., Pries, A., Steinbuchel, A., Mayer, F. (1995). Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J. Bacteriol. 177, 2425-2435. 19Ushimaru, K., Tsuge, T. (2016). Characterization of binding preference of polyhydroxyalkanoate biosynthesis-related multifunctional protein PhaM from Ralstonia eutropha. Appl. Microbiol. Biotechnol. 100, 4413-4421. 20Pfeiffer, D., Wahl, A., Jendrossek, D. (2011). Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly (3‐hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol. Microbiol. 82, 936-951. 21Cai, S., Cai, L., Zhao, D., Liu, G., Han, J., Zhou, J., Xiang, H. (2015). A novel DNA-binding protein, PhaR, plays a central role in the regulation of Polyhydroxyalkanoate accumulation and granule formation in the haloarchaeon Haloferax mediterranei. Appl. Environ. Microbiol. 81, 373-385. 22Pötter, M., Steinbüchel, A. (2005). Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6, 552-560. 23Ricke, S. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 82, 632-639. 24Aoyagi, Y., Doi, Y., Iwata, T. (2003). Mechanical properties and highly ordered structure of ultra-high-molecular-weight poly [(R)-3-hydroxybutyrate] films: Effects of annealing and two-step drawing. Polym. Degrad. Stab. 79, 209-216. 25de Rijk, T. C., van de Meer, P., Eggink, G. Weusthuis, R. A. (2005). Methods for Analysis of Poly (3-hydroxyalkanoate) (PHA) Composition. Biopolymers online. 26Miljö, A. (2001). Marine Litter—Trash that Kills (Swedish Environmental Protection Agency). 27Hartl, F. U., Bracher, A. Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature. 475, 324-332. 28Marger, M. D. Saier, M. H. (1993). A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18, 13-20. 29Corbett, K. D. Berger, J. M. (2004). Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct. 33, 95-118 30Chen, G. (2009). A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem. Soc. Rev. 38, 2434-2446. 31Han, M. J., Yoon, S. S. Lee, S. Y. (2001). Proteome analysis of metabolically engineered Escherichia coli producing Poly(3-hydroxybutyrate). J. Bacteriol. 183, 301-308. 32Yano, T., Endo, T., Tuji, T. Nishizawa, Y. (1991). Fed-batch culture with a modified DO-stat method. J. Ferment. Bioeng. 71, 35-38. 33Ramsay, B., Lomaliza, K., Chavarie, C., Dube, B., Bataille, P., Ramsay, J. (1990). Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl. Environ. Microbio. 56(7), 2093-2098. 34Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., & Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 145(1), 69-73. 35Alting-Mees, M. A., Short, J. M. (1989). pBluescript II: Gene mapping vectors. Nucleic Acids Res. 17(22), 9494. 36Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 166, 175-176. 37Steinbüchel, A., Debzi, E., Marchessault, R. H., Timm, A. (1993). Synthesis and production of poly (3-hydroxyvaleric acid) homopolyester by chromobacterium violaceum. Appl. Microbiol. Biotechnol. 39(4-5), 443-449. 38Steinbüchel, A. Schmack, G. (1995). Large-scale production of poly (3-hydroxyvaleric acid) by fermentation of Chromobacterium violaceum, processing, and characterization of the homopolyester. J. Environ. Polymer Degradation. 3, 243-258. 39Liebergesell, M., Hustede, E., Timm, A., Steinbüchel, A., Fuller, R. C., Lenz, R. W., Schlegel, H. G. (1991). Formation of poly (3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch. Microbiol. 155(5), 415-421. 40Chen, G. Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 26, 6565-6578. 41Ahn, J., Jho, E. H. Nam, K. (2015). Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates. Environ. Eng. Res. 20, 246-253. 42Reeves, M. W., Pine, L., Hutner, S. H., George, J. R., Harrell, W. K. (1981). Metal requirements of Legionella pneumophila. J. Clin. Microbiol. 13(4), 688-695. 43Ayub, N. D., Tribelli, P. M., López, N. I. (2009). Polyhydroxyalkanoates are essential for maintenance of redox state in the antarctic bacterium pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles. 13(1), 59-66.
|