跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁家靜
研究生(外文):LIANG, CHIA-CHING
論文名稱:一般研磨及奈米化牛樟芝子實體的抗炎作用之比較
論文名稱(外文):The Comparison of The Anti-Inflammatory Effects of Ground and Nanonized Antrodia Cinnamomea Fruiting Body
指導教授:孫芳明孫芳明引用關係
指導教授(外文):SUN, FANG-MING
口試委員:翁家瑞吳淑靜
口試委員(外文):WENG, CHIA-JUIWU, SHU-JING
口試日期:2017-01-18
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:保健營養系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:97
中文關鍵詞:一般研磨牛樟芝子實體奈米研磨牛樟芝子實體抗發炎
外文關鍵詞:Ground Antrodia cinnamomea fruiting body (GACFB)Nanonized Antrodia cinnamomea fruiting body (NACFB)Anti-inflammatory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:941
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:1
牛樟芝(Antrodia cinnamomea, AC)是一種台灣特有的藥用真菌,AC的生理活性包含護肝、抗發炎、抗C型肝炎病毒及抗癌等;因此,AC已成為新藥開發及保健食品研發的重要原料。中草藥及藥物奈米化已被證實可增加溶解度、生物利用率、減少藥物毒性、強化藥理活性等功能;但目前很少有奈米化AC之活性物質含量及生理活性的文獻報導。本實驗嘗試比較一般研磨牛樟芝子實體(Ground Antrodia cinnamomea fruiting body, GACFB)及奈米研磨牛樟芝子實體(Nanonized Antrodia cinnamomea fruiting body, NACFB)其三萜類、多醣體含量及以LPS誘導發炎的RAW264.7細胞之抗發炎活性之差異。結果顯示NACFB 在UPLC-MS/MS分析之三萜類含量antcin K、antcin H、 antcin B、antcin C、dehydroeburicoic acid等5種三萜類的含量分別比GACFB高出 67%、 66%、 54%、 53% 及 51%。NACFB多醣體含量較GACFB高18.51%,並具有顯著差異。在RAW264.7細胞抗發炎活性中NACFB在6.25 μg/mL下對MAPKs訊號之磷酸化JNK、ERK1/2、p38表現量抑制效果顯著高於GACFB 13.8%、24.8%及34.8%。在PGE2表現量與細胞核之轉錄因子p65表現量顯著高於GACFB 10.8%、 28.3%。在IL-6、IL-10抑制效果顯著高於GACFB 45.84 %、81.27%,結果顯示在相同的濃度下NACFB比GACFB更能有效的抑制由LPS誘導RAW264.7細胞的發炎反應。
Antrodia cinnamomea (AC), a Taiwan-specific Medicinal mushroom, has been reported to have numerous biological activities including hepatoprotection, anti-inflammation, antihepatitis C virus activity, and anticancer activity. It has been used in the formulation of pharmaceutical and functional foods. Nanotechnology has large number of advantages for herb or drugs, including enhancement of solubility and bioavailability, protection from toxicity, enhancement of pharmacological activity, enhancement of stability, improving tissue macrophages distribution, sustained delivery, protection from physical and chemical degradation. However, very few researches have been done to investigate the effects of nanoization on the chemical composition and biological functions of AC. The amount of crude polysaccharides, triterpenoids and anti-inflammatory activity of Ground Antrodia cinnamomea fruiting body (GACFB) and Nanonged Antrodia cinnamomea fruiting body (NACFB) in RAW264.7 macrophages treated with LPS were compared in this study. The results from UPLC-MS/MS analyses showed the amount of triterpenoids (antcin K, antcin H, antcin B, antcin C, dehydroeburicoic acid) in NACFB were increased 67%, 66%, 54%, 53% and 51% respectively when comparied with GACFB. The amount of polysaccharide increased 18.51% after nanoization. The inhibitory effects of NACFB on phosphor-JNK, ERK1/2, p38, p65, PGE2, IL-6 and IL-10 in RAW264.7 cells was significantly higher than that of GACFB (13.25, 24.8, 34.8, 28.3, 10.8, 45.84 and 81.27%) at the concentration of 6.25 μg/mL. The results from this study indicate the anti-inflammatory activity of Antrodia cinnamomea fruiting body was increased significantly after nanoization.
摘要 I
Abstract III
謝誌 IV
目錄 V
表目錄 VII
圖目錄 VIII
縮寫表 X
第一章、 前言 1
第二章、 文獻探討 3
一、 發炎反應 3
1. 發炎機轉 4
2. 脂多醣 ( Lipopolysaccharide, LPS ) 與發炎反應 12
3. 炎症細胞 ( Inflammatory cells ) 14
4. 炎性細胞激素 ( Inflammatory cytokines ) 16
5. 其他與發炎相關蛋白質或賀爾蒙 ( Other inflammatory-related proteins or hormones ) 18
二、 牛樟芝 ( Antrodia cinnamomea, AC ) 20
1. 三萜類 ( Triterpenoids ) 20
2. 多醣體 ( Polysaccharides ) 24
三、 奈米顆粒 ( Nanoparticles ) 25
四、 研究目的 29
五、 研究假設 30
第三章、 材料與方法 31
一、 實驗架構 31
二、 試劑與材料 32
三、 藥品 32
四、 儀器 33
五、 實驗方法 35
2. UPLC/MS/MS三萜類定性、定量 36
3. 粗多醣含量測試 37
4. 小鼠 RAW264.7 cells 培養 38
5. 細胞存活率測定 39
6. 蛋白質表現分析 39
7. 酵素連結免疫吸附分析 42
8. 統計分析 44
第四章、 結果 45
一、 GACFB粉末光學顯微鏡相片 45
二、 NACFB在電子顯微鏡粒徑分析 45
三、 GACFB及NACFB在UPLC/MS/MS 圖譜及定性定量結果 45
四、 GACFB與NACFB粗多醣測試結果 46
五、 GACFB與NACFB對RAW264.7細胞之毒性測試 46
六、 GACFB與NACFB對經LPS誘導之RAW264.7細胞之磷酸化JNK、ERK1/2、p38 蛋白質表現量之影響 46
七、 GACFB與NACFB對經LPS誘導之RAW264.7細胞之COX-2、PGE2蛋白質表現量之影響 47
八、 GACFB與NACFB對經LPS誘導之RAW264.7細胞之細胞核轉錄因子p65蛋白質表現量之影響 48
九、 GACFB與NACFB對經LPS誘導之RAW264.7細胞之促發炎激素IL-1β之影響 48
十、 GACFB與NACFB對經LPS誘導之RAW264.7細胞之促發炎激素IL-6之影響 49
十一、 GACFB與NACFB對經LPS誘導之RAW264.7細胞之促發炎激素IL-10之影響 49
十二、 GACFB與NACFB對經LPS誘導之RAW264.7細胞之促發炎激素IL-18之影響 50
第五章、 討論 51
第六章、 結論 55
第七章、 參考文獻 57


1.Cheung, P. C. K. (2008). Overview of mushroom cultivation and utilization as functionalfoods. In P. C. K. Cheung (Ed.), Mushrooms as Functional Foods 1–34.
2.Halpern, G. M. (2007). Healing mushrooms: Ancient wisdom for better health. Square One Pub.
3.Cherng, I. H., Chang, H. C., Cheng, M. C & Wang, Y. (1995). Three new triterpenoids from Antrodia cinnamomea. J Nat Prod, 58, 365–371.
4.Liao, P. C., Kuo, D. C., Lin, C. C., Ho, K. C., Lin, T. P & Hwang, S. Y. (2010). Historical spatial range expansion and a very recent bottleneck of Cinnamomum kanehirae Hay. (Lauraceae) in Taiwan inferred from nuclear genes. BMC Evol Biol 10.
5.Geethangili M and Tzeng YM. (2011). Review of pharmacological effects of antrodia camphorata and its bioactive compounds. Evidence-Based Complementary and Alternative Medicine, 17
6.Ogawa, Y., Calhoun, W.J. (2006). The role of leukotrienes in airway inflammation. J Allergy Clin Immunol, 118(4), 789–98.
7.Le Y, Zhou Y, Iribarren P, Wang J. (2004). Chemokines and chemokine receptors: their manifold roles in homeostasis and disease . Cell Mol Immunol, 1 (2), 95–104.
8.Martin P. & Leibovich S. (2005). Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol, 15 (11), 599–607.
9.Sethi G, Sung B, Aggarwal BB. (2008). TNF-α master switch for inflammation to cancer. Front Biosci, 13, 5094–107.
10.Peyrin-Biroulet L, Desreumaux P, Sandborn WJ, Colombel JF. (2008). Crohn's disease: beyond antagonists of tumour necrosis factor. Lancet, 372, 67–81.
11.Yang,Y.Y., Kim, S. C., Tao, Y., Young,S. Y., Rhee,M. H., Sung, G. H., Yoo, B. C., Cho1, J. Y.(2014). Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses. Mediators of Inflammation, 13.
12.Marie C & Philippe P. R.(2011). Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol Mol Biol Rev, 75(1), 50–83.
13.Lee, J.C., Laydon, J.T., McDonnell, P.C., Gallagher, T.F., Kumar S., Green D., McNulty D., … Heys, S.W. (1994). Landvatter, et al.A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 372, 739–746.
14.L. Shapiro & C.A. Dinarello. (1995). Osmotic regulation of cytokine synthesis in vitro. Proc. Natl. Acad. Sci. U. S. A., 92, 12230–12234.
15.R. Beyaert, A. Cuenda, W. Vanden Berghe, S. Plaisance, J.C. Lee, G. Haegeman, P. Cohen, W. Fiers. (1996). The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J, 15, 1914–1923.
16.D. Hwang, B.C. Jang, G. Yu, M. Boudreau. (1997). Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide: mediation through both mitogen-activated protein kinase and NF-κB signaling pathways in macrophages. Biochem. Pharmacol, 54, 87–96.
17.A. Paul, A. Cuenda, C.E. Bryant, J. Murray, E.R. Chilvers, P. Cohen, G.W. Gould, R. Plevin. (1999). Involvement of mitogen-activated protein kinase homologues in the regulation of lipopolysaccharide-mediated induction of cyclo-oxygenase-2 but not nitric oxide synthase in RAW264.7 macrophages. Cell. Signal, 11, 491–497.
18.S.H. Ridley, J.L. Dean, S.J. Sarsfield, M. Brook, A.R. Clark, J. Saklatvala. (1998). A p38 MAP kinase inhibitor regulates stability of interleukin-1-induced cyclooxygenase-2 mRNA. FEBS Lett, 439, 75–80.
19.R. Seger, E.G. Krebs. (1995). The MAPK signaling cascade. FASEB J, 9, 726–735.
20.Entrez Gene: MAPK3 mitogen-activated protein kinase 3
21.P.H. Warne, P.R. Vicinia, J. (1993). Downward. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature, 364, 352–355.
22.Buggele WA, Johnson KE, Horvath CM (2012). Influenza A virus infection of human respiratory cells induces primary microRNA expression. J. Biol. Chem. 287 (37), 31027–40.
23.Owaki H, Makar R, Boulton TG, Cobb MH, Geppert TD (February 1992). Extracellular signal-regulated kinases in T cells: characterization of human ERK1 and ERK2 cDNAs. Biochem. Biophys. Res. Commun. 182 (3), 1416–22.
24.R.J. Davis. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103, 239–252.
25.Vlahopoulos S, Zoumpourlis VC (2004). JNK: a key modulator of intracellular signaling. Biochemistry Mosc, 69 (8), 844–54.
26.Oltmanns U, Issa R, Sukkar MB, John M, Chung KF (2003). Role of c-jun N-terminal kinase in the induced release of GM-CSF, RANTES and IL-8 from human airway smooth muscle cells. Br. J. Pharmacol. 139 (6), 1228–34.
27.Michael JM, Sankar G. (1997). Rel/NF-κB and IκB proteins: an overview. Seminars in Cancer Biology, 8, 63-73.
28.Michael JM, Sankar G. (1998). Signal transducion through NF-κB. Immun Today, 19(2), 80-88.
29.Chapter4 Gene Transcription. Figure 4-H-3; Figure 4-H-4. Molecular Biology Web Book.
30.Chapter6 Cell Signaling and Apoptosis. Figure 6-F-2.Molecular Biology Web Book.
31.Ebrahim Z., Michael K. (1999). Bridging the gap: composition, regulation, and physiological function of the IκB Kinase Complex. Mol Cell Biol, 19, 4547-4551.
32.Charles KK, Elaine F. (2000). It's Got You Covered: NF-κB in the Epidermis. J Cell Biol, 149, 999-1004.
33.Jorge M, Meco M, Paul R. (2003). NF-κB activation by protein kinase C isoforms and B-cell function. EMBO Reports, 4, 31-36.
34.Chen F, Castranova V, Shi XL. (2001). New Insights into the Role of Nuclear Factor-κB in cell growth regulation. Am J Pathol, 159, 387-397.
35.Silverman N, Maniatis T. (2001). NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev, 15, 2321-2342.
36.Fu H, Sadis S, Rubin DM, Glickman M, van Nocker, S, Finley D, Vierstra RD. (1998). Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26S proteasome subunit. MCBI J Biol Chem, 273, 1970-1981.
37.Michael JM, Sankar G. (1997). Rel/NF-κB and IκB proteins: an overview. Seminars in Cancer Biology, 8, 63-73.
38.Wang, Z., Li, S., Cao, Y., Cao, D. (2016). Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer.  Oxidative medicine and cellular longevity (3), 1-15.
39.Paul PT, Gary SF. (2001). NF-κB: a key role in inflammatory diseases. J Clin Invest, 107, 7-11.
40.Aota K, Azuma M, Yamashita T, Tamatani T, Motegi K,Ishimaru N. (2000). 5-fluorouracil induces apoptosis through the suppression of NF-kB activity in human salivary gland cancer cells. Biochem Biophys Res Commun, 273, 1168-1174.
41.Akira S, Takeda K, Kaisho T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol, 2 (8), 675-80.
42.Park HS, et al. (2004). Cutting edge: direct interaction of TLR4 with NAD (P) H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa. B J Immunol, 173 (6), 3589-93.
43.Wright SD. (1999). Toll, a new piece in the puzzle of innate immunity. J Exp Med, 189 (4), 605-9.
44.Poltorak A, et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282 (5396), 2085-8.
45.Qureshi ST, et al. (1999). Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med, 189 (4), 615-25.
46.Abbas, Abul (2006). Basic Immunology. Elsevier. ISBN 978-1-4160-2974-8.
47.Sweet MJ, Hume DA. (1996). Endotoxin signal transduction in macrophages. J Leukoc Biol, 60 (1), 8-26.
48.Akira S. (2003). Toll-like receptor signaling. J Biol Chem, 278 (40), 38105-8.
49.Cytokine in John Lackie. (2010). A Dictionary of Biomedicine. Oxford University Press.
50.Cytokine in Stedman’s Medical Dictionary. (2006). Wolters Kluwer Health, Lippincott, Williams & Wilkins.
51.Horst Ibelgaufts. Cytokines in Cytokines & Cells Online Pathfinder Encyclopedia Version 31.4.
52.Matzinger P (2012). The evolution of the danger theory. Interview by Lauren Constable, Commissioning Editor. Expert Rev Clin Immunol. 8 (4): 311–7.
53.Sahoo M, Ceballos-Olvera I, del Barrio L, Re F (2011). Role of the inflammasome, IL-1β, and IL-18 in bacterial infections. ScientificWorldJournal. 11: 2037–50.
54.Contassot E, Beer HD, French LE (2012). Interleukin-1, inflammasomes, autoinflammation and the skin. Swiss Med Wkly. 142: 13590.
55.Unless else specified in boxes, then ref is: Lippincott's Illustrated Reviews: Immunology. Paperback: 384 pages. Publisher: Lippincott Williams & Wilkins; (2007). Language: English. 68.
56.Noosheen Alaverdi & David Sehy. (2007). Cytokines - Master Regulators of the Immune System. ebioscience.
57.Banks WA, Kastin AJ, Gutierrez EG (1994). Penetration of interleukin-6 across the murine blood-brain barrier. Neuroscience Letters. 179 (1-2): 53–6.
58.Cohen S, Doyle WJ, Skoner DP (1999). Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosomatic Medicine. 61 (2): 175–80
59.Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A (2001). Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology. 19 (1): 683–765.
60.Entrez Gene: IL18 interleukin 18 (interferon-gamma-inducing factor). (2016).
61.Liu Z, Wang H, Xiao W, Wang C, Liu G, Hong T (2010). Thyrocyte interleukin-18 expression is up-regulated by interferon-γ and may contribute to thyroid destruction in Hashimoto's thyroiditis. Int J Exp Pathol. 91 (5): 420–5.
62.Minghetti, L. (2004). Cyclooxygenase-2 in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol, 901-10.
63.Yuan, G. F., Wahlqvist, M. L., He, G. Q., Yang, M., & Li, D. (2006). Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr 15, 143–152.
64.Pan, M. H., Lai, C. S., & Ho, C. T. (2010). Anti-inflammatory activity of natural dietary flavonoids. Food Funct 1, 15–31.
65.Chien, S. C., Chen, M. L., Kuo, H. T., Tsai, Y. C., Lin, B. F & Kuo, Y. H. (2008). Anti-inflammatory activities of new succinic and maleic derivatives from the fruiting body of Antrodia camphorata. J Agric Food Chem 56, 7017–7022.
66.Wu, M. D., Cheng, M. J., Wang, B. C., Yech, Y. J., Lai, J. T., Kuo, Y. H., et al. (2008). Maleimide and maleic anhydride derivatives from the mycelia of Antrodia cinnamomea and their nitric oxide inhibitory activities in macrophages. J Nat Prod 71, 1258–1261.
67.Geethangili, M., Fang, S. -H., Lai, C. -H., Rao, Y. K., Lien, H. -M., & Tzeng, Y. -M. (2010). Inhibitory effect of Antrodia camphorata constituents on the Helicobacter pylori-associated gastric inflammation. Food Chem 119, 149–153.
68.Peek, R. M., & Blaser, M. J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2, 28–37.
69.Hsieh, Y. H., Chu, F. H., Wang, Y. S., Chien, S. C., Chang, S. T., Shaw, J. F., et al. (2010). Antrocamphin A, an anti-inflammatory principal from the fruiting body of Taiwanofungus camphoratus, and its mechanisms. J Agric Food Chem 58, 3153–3158.
70.Borchers, A. T., Keen, C. L., & Gershwin, M. E. (2004). Mushrooms, tumors, and immunity: An update. Exp Biol Med 229, 393–406.
71.Ooi, V. E. C. (2009). Antitumor and immunomodulatory activities of mushroom polysaccharides. Mushrooms as Functional Foods, 147–198.
72.Huang, G. J., Huang, S. S., Lin, S. S., Shao, Y. Y., Chen, C. C., Hou, W. C., et al. (2010). Analgesic effects and the mechanisms of anti-inflammation of ergostatrien-3 beta-ol from Antrodia camphorata submerged whole broth in mice. J Agric Food Chem 58, 7445–7452.
73.Huang, G. J., Deng, J. S., Huang, S. S., Shao, Y. Y., Chen, C. C. & Kuo, Y. H. (2012). Protective effect of antrosterol from Antrodia camphorata submerged whole broth against carbon tetrachloride-induced acute liver injury in mice. Food Chem 132, 709–716.
74.Yu, Y. L. Chen, I. H. Shen, K. Y. Huang, R. Y. Wang, W. R. Chou, C. J. Chang, T. T. Chu, C. L. (2009). A triterpenoid methyl antcinate K isolated from Antrodia cinnamomea promotes dendritic cell activation and Th2 differentiation. Eur J Immunol, 2482-91.
75.Chen, Y. S. Pan, J. H. Chiang, B. H. Lu, F. J. Sheen, L. Y. (2008). Ethanolic extracts of Antrodia cinnamomea mycelia fermented at varied times and scales have differential effects on hepatoma cells and normal primary hepatocytes. J Food Sci, 179-85.
76.Chen, Y. -C., Liu, Y. -l, Li, F. -Y., Chang, C. -l, Wang, S. -Y., Lee, K. -Y., et al. (2011). Antcin A, a steroid-like compound from Antrodia camphorata, exerts anti-inflammatory effect via mimicking glucocorticoids. Acta Pharmacol Sin, 32, 904–911.
77.Lin, Y. L. Wen, T. N. Chang, S. T. Chu, F. H. (2011). Proteomic analysis of differently cultured endemic medicinal mushroom Antrodia cinnamomea T.T. Chang et W.N. Chou from Taiwan. Int J Med Mushrooms, 473-81.
78.Tsaia, MC., Songb, TY., Shiha, PH., Yena, GC. (2007). Antioxidant properties of water-soluble polysaccharides from Antrodia cinnamomea in submerged culture. Food Chemistry, 104(3), 1115–1122.
79.Yanga,CM., Zhoua,YJ., Wangb,RJ., Hua,ML. (2009). Anti-angiogenic effects and mechanisms of polysaccharides from Antrodia cinnamomea with different molecular weights. Journal of Ethnopharmacology, 123(3), 407–412
80.Han, H. F. Nakamura, N. Zuo, F. Hirakawa, A. Yokozawa, T. Hattori, M. (2006). Protective effects of a neutral polysaccharide isolated from the mycelium of Antrodia cinnamomea on Propionibacterium acnes and lipopolysaccharide induced hepatic injury in mice. Chem Pharm Bull (Tokyo), 496-50.
81.Alle’mann, E., Gurny, R., Doelker, E. (1993). Drug loaded nanoparticles:preparation methods and drug targeting issues. European Journal of Pharmaceutics and Biopharmaceutics, 39, 173–191.
82.Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D and Yang H. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and fibre Toxicology, 2: 1-35.
83.陳輝煌(2013)。奈米科技與綠色食品。科學月刊,05,10, 523期。
84.Kumar P, Lakshmi YS, Kondapi AK. (2016). Triple drug combination of zidovudine, efavirenz and lamivudine loaded lactoferrin Nanoparticles: an effective nano first-line regimen for HIV therapy. Pharm Res.
85.Manshian BB, Jimenez J, Himmelreich U, Soenen SJ. (2016). Presence of an immune system increases anti-tumor effect of Ag Nanoparticle treated mice. Adv Healthc Mater.
86.Xiao B, Ma P, Ma L, Chen Q, Si X, Walter L, Merlin D. (2016). Effects of tripolyphosphate on cellular uptake and RNA interference efficiency of chitosan-based nanoparticles in RAW 264.7 macrophages. J Colloid Interface Sci, 490, 520-528.
87.Yang X1, Zhang W, Zhao Z, Li N, Mou Z, Sun D, Cai Y, Wang W, Lin Y. (2016). Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J Inorg Biochem, 167, 36-48.
88.Das S, Baker AB. (2016). Biomaterials and Nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol. 4:82.
89.Li S, Luo J, Wang X, Guan BC, Sun CK. (2011). Effects of Ginkgo biloba extracts on NMDA-activated currents in acutely isolated hippocampal neurons of the rat. View issue TOC. 25(1), 137–141.
90.Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY. (2016). Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies. Int J Nanomedicine, 11: 4799–4818.
91.Yang X, Li Zj , Wang N,Li L,Song Lj , He T, Sun L, Wang Zh,Wu Qj,Luo N,Yi C. (2015). Curcumin-encapsulated polymeric micelles suppress the development of colon cancer In Vitro and In Vivo. Sci Rep. 5: 10322.
92.Singh N, Khullar N, Kakkar V, Kaur IP. (2015). Sesamol loaded solid lipid nanoparticles: a promising intervention for control of carbon tetrachloride induced hepatotoxicity. BMC Complement Altern Med. 15: 142.
93.Taylor, Robert; Coulombe, Sylvain; Otanicar, Todd; Phelan, Patrick; Gunawan, Andrey; Lv, Wei; Rosengarten, Gary; Prasher, Ravi; Tyagi, Himanshu (2013). Small particles, big impacts: A review of the diverse applications of nanofluids. Journal of Applied Physics. 113: 011301.
94.Lin, YL., Lee, YR., Tsao, NW., Wang, SY., Shaw, JF., Chu, FH. (2015). Characterization of the 2,3-oxidosqualene cyclase gene from Antrodia cinnamomea and enhancement of cytotoxic triterpenoid compound production. J Nat Prod. 78(7):1556-62.
95.王宮,王瑾,徐蔚 (2011)。牛樟芝多糖提取條件研究。福建中醫藥。2011年,第42卷,第一期。
96.Wena,CL., Chang,CC., Huang,SS., Kuo,CL.,Hsu,SL., Deng,JS., Huang,GJ. (2011). Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. Journal of Ethnopharmacology, 137, 575– 584.
97.Lee, H.Y., Jeong, Y.I. and Choi, K.C.(2011). Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation. Int J Nanomedicine. 6, 2879–2888.
98.Tsung,TH., Sian,PW., Kowit,YC., David,M.O.,Yun,FK., Yi,HW., Cheng,YW., Chia,CL., Jan,M,John D.Y., Hsin,CL. (2014). The medicinal fungus Antrodia cinnamomea suppresses inflammation by inhibiting the NLRP3 inflammasome. Journal of Ethnopharmacology. 155, 154–164.
99.Cheng, JJ., Chao, CH., Chang, PC., Lu,MK. (2016). Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea. Food Hydrocolloids. 53, 37-45.
100.Suh, N., Wang, Y., Honda, T., Gribble, G.W., Dmitrovsky, E....... Sporn, M. B (1999). A Novel Synthetic Oleanane Triterpenoid, 2-cyano-3, 12 -dioxoolean-1, 9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer research. 59, 336–341.
101.Y.-C. Shen, C.-F. Chen, Y.-H. Wang, T.-T. Chang, and C.-J. Chou. (2003). Evaluation of the immuno-modulating activity of some active principles isolated from the fruiting bodies of Antrodia camphorate. Chinese Pharmaceutical Journal, 55(5), 313–318.
102.Y.-C. Shen, Y.-H. Wang, Y.-C. Chou et al. (2004). Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorate. Planta Medica, 70(4), 310–314.
103.J.-J. Chen, W.-J. Lin, C.-H. Liao and P.-C. Shieh. (2007). Anti-inflammatory benzenoids from Antrodia camphorate. Journal of Natural Products, 70(6), 989–992.
104.C.-C. Chen, Y.-W. Liu, Y.-B. Ker et al. (2007). Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured Antrodia camphorate mycelia. Journal of Agricultural and Food Chemistry, 55(13), 5007–5012.
105.M.-C. Tsai, T.-Y. Song, P.-H. Shih and G.-C. Yen. (2007). Antioxidant properties of water-soluble polysaccharides from Antrodia cinnamomea in submerged culture. Food Chemistry, 104(3), 1115–1122.
106.Dong K Park and Hye-Jin Park. (2013). Research article: Ethanol extract of Antrodia camphorata grown on germinated brown rice suppresses inflammatory responses in mice with acute DSS-induced colitis. Evidence-Based Complementary and Alternative Medicine, 12.
107.Suh, N ., Honda,T., Finlay, H. J., Barchowsky, A. , Williams,C., Benoit, N. E., ... Sporn, M.B. (1998). Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Immunology, 58, 4. 

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top