|
V. Reference 1. Curado, M.P. and M. Hashibe, Recent changes in the epidemiology of head and neck cancer. Curr Opin Oncol, 2009. 21(3): p. 194-200. 2. Koontongkaew, S., The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer, 2013. 4(1): p. 66-83. 3. Chen, Y.J., et al., Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci, 2008. 99(8): p. 1507-14. 4. Chung, C.H., et al., Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell, 2004. 5(5): p. 489-500. 5. Al-Sarraf, M., Treatment of locally advanced head and neck cancer: historical and critical review. Cancer Control, 2002. 9(5): p. 387-99. 6. Kalyankrishna, S. and J.R. Grandis, Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol, 2006. 24(17): p. 2666-72. 7. Grandis, J.R. and D.J. Tweardy, Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res, 1993. 53(15): p. 3579-84. 8. Rubin Grandis, J., et al., Inhibition of epidermal growth factor receptor gene expression and function decreases proliferation of head and neck squamous carcinoma but not normal mucosal epithelial cells. Oncogene, 1997. 15(4): p. 409-16. 9. Erjala, K., et al., Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res, 2006. 12(13): p. 4103-11. 10. Carter, C.A., R.J. Kelly, and G. Giaccone, Small-molecule inhibitors of the human epidermal receptor family. Expert Opin Investig Drugs, 2009. 18(12): p. 1829-42. 11. Bonner, J.A., et al., Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med, 2006. 354(6): p. 567-78. 12. Merlano, M. and M. Occelli, Review of cetuximab in the treatment of squamous cell carcinoma of the head and neck. Ther Clin Risk Manag, 2007. 3(5): p. 871-6. 13. Vermorken, J.B., et al., Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med, 2008. 359(11): p. 1116-27. 14. Yonesaka, K., et al., Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med, 2011. 3(99): p. 99ra86. 15. Wheeler, D.L., E.F. Dunn, and P.M. Harari, Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol, 2010. 7(9): p. 493-507. 16. Li, C., et al., Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene, 2009. 28(43): p. 3801-13. 17. Wheeler, D.L., et al., Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene, 2008. 27(28): p. 3944-56. 18. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8. 19. Peinado, H., D. Olmeda, and A. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer, 2007. 7(6): p. 415-28. 20. Kalluri, R. and E.G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84. 21. Witta, S.E., et al., Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res, 2006. 66(2): p. 944-50. 22. Skvortsova, I., et al., Epithelial-to-mesenchymal transition and c-myc expression are the determinants of cetuximab-induced enhancement of squamous cell carcinoma radioresponse. Radiother Oncol, 2010. 96(1): p. 108-15. 23. Holz, C., et al., Epithelial-mesenchymal-transition induced by EGFR activation interferes with cell migration and response to irradiation and cetuximab in head and neck cancer cells. Radiother Oncol, 2011. 101(1): p. 158-64. 24. Browning, J.L., et al., Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell, 1993. 72(6): p. 847-56. 25. Agyekum, S., et al., Expression of lymphotoxin-beta (LT-beta) in chronic inflammatory conditions. J Pathol, 2003. 199(1): p. 115-21. 26. Ware, C.F., Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol, 2005. 23: p. 787-819. 27. Bonizzi, G. and M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004. 25(6): p. 280-8. 28. Ghosh, S., M.J. May, and E.B. Kopp, NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998. 16: p. 225-60. 29. Dejardin, E., et al., The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity, 2002. 17(4): p. 525-35. 30. Qing, G., Z. Qu, and G. Xiao, Stabilization of basally translated NF-kappaB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kappaB2 p100. J Biol Chem, 2005. 280(49): p. 40578-82. 31. Haybaeck, J., et al., A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell, 2009. 16(4): p. 295-308. 32. Or, Y.Y., et al., Identification of a novel 12p13.3 amplicon in nasopharyngeal carcinoma. J Pathol, 2010. 220(1): p. 97-107. 33. Daller, B., et al., Lymphotoxin-beta receptor activation by lymphotoxin-alpha(1)beta(2) and LIGHT promotes tumor growth in an NFkappaB-dependent manner. Int J Cancer, 2011. 128(6): p. 1363-70. 34. Lui, V.W., et al., Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov, 2013. 3(7): p. 761-9. 35. Bissada, E., et al., Prevalence of K-RAS Codons 12 and 13 Mutations in Locally Advanced Head and Neck Squamous Cell Carcinoma and Impact on Clinical Outcomes. Int J Otolaryngol, 2013. 2013: p. 848021. 36. Young, N.R., et al., Molecular phenotype predicts sensitivity of squamous cell carcinoma of the head and neck to epidermal growth factor receptor inhibition. Mol Oncol, 2013. 7(3): p. 359-68. 37. Rajkumar, S.V., et al., Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol, 2005. 23(3): p. 630-9. 38. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15. 39. Fu, Y.X. and D.D. Chaplin, Development and maturation of secondary lymphoid tissues. Annu Rev Immunol, 1999. 17: p. 399-433. 40. Godwin, P., et al., Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol, 2013. 3: p. 120. 41. Wang, Z., et al., mTOR co-targeting in cetuximab resistance in head and neck cancers harboring PIK3CA and RAS mutations. J Natl Cancer Inst, 2014. 106(9). 42. Hsu, D.S., et al., Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell, 2014. 26(4): p. 534-48. 43. Lukashev, M., et al., Targeting the lymphotoxin-beta receptor with agonist antibodies as a potential cancer therapy. Cancer Res, 2006. 66(19): p. 9617-24.
|