跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 09:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何仰惠
研究生(外文):Yang-Hui Ho
論文名稱:Lymphotoxin-β在頭頸癌產生Cetuximab抗性所扮演的角色
論文名稱(外文):The role of Lymphotoxin-β in Cetuximab resistance of head and neck cancer
指導教授:楊慕華楊慕華引用關係
指導教授(外文):Muh-Hwa Yang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:47
中文關鍵詞:頭頸癌爾必得舒淋巴毒素-beta
外文關鍵詞:head and neck cancerCetuximabLymphotoxin-beta
相關次數:
  • 被引用被引用:0
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
爾必得舒(Cetuximab)為癌症的標靶藥物之一,其藉著抑制癌症表皮生長因子受體,進而達到抑制下游訊息傳導路徑活化,此藥物已被廣泛用來治療頭頸癌(HNSCC),但有些病人卻產生抗藥性導致預後不如預期。為了釐清頭頸癌細胞產生抗藥性的原因,我們在體外篩選出對爾必得舒產生抗藥性的頭頸癌細胞株,並利用RNA-Sequence方法發現在抗藥性細胞株中會高度表達Snail 以及Lymphotoxin beta (LTβ)。Snail是造成癌細胞上皮間質細胞轉化的重要誘導物之一,並且透過實驗發現會調節細胞激素LTβ。由於有文獻指出腫瘤細胞在上皮間質細胞轉化過程中會伴隨著抗藥性的產生,因此我們猜測Snail-LTβ路徑是造成抗藥性的原因之一。 首先我們使用shRNA技術降低抗藥性植株中Snail或是LTβ表現,結果發現皆能有效增加爾必得舒對於抗藥株的毒殺作用。目前LTβ在腫瘤細胞中扮演的角色仍不清楚,過往認為LTβ會在樹突細胞的細胞膜上與LTβ形成α1β2 heterodimer,並結合到其他細胞表面上的LTβ receptor。這樣的結合會活化NFκB訊息路徑,而在我們的實驗中也發現爾必得舒抗藥株的TNF,IL6等NFκB訊息路徑的下游基因表現高於非抗藥性的細胞。由於NFκB訊息路徑與細胞增生作用相關,因此我們認為Snail- LTβ 路徑是透過NFB使得頭頸癌抗藥株能夠抵抗爾必得舒的毒殺作用。最後我們發現在頭頸癌抗藥株中同時給予NFB抑制劑處理能大幅增加細胞對於爾必得舒的敏感度,並且在小鼠動物模型中,同時給予NFκB抑制劑以及爾必得舒,對於腫瘤有著最好的抑制效果。此研究結果可以提供爾必得舒抗藥性的患者另一種有效的治療方式。
Cetuximab, a monoclonal antibody against the epidermal growth factor receptor EGFR extracellular domain, has been approved for the treatment of head and neck squamous cell carcinomas (HNSCC). However, many patients acquire resistance after Cetuximab treatment. To clarify the reason of resistance response in HNSCC, we established Cetuximab-resistant cell line in vitro. By RNA-sequencing, we found Snail and Lymphotoxin beta (LTβ) highly expressed in Cetuximab-resistant cell line. Our previously results indicated Snail, an important inducer of epithelial-mesenchymal transtition (EMT), regulates cytokines expression in cancer cells, such as LTβ. Other studies indicated that cancer cells acquire drug resistance in the process of EMT. Therefore, we proposed Snail- LTβ axis drives Cetuximab resistance. Our results showed knock-down of Snail or LTβ increased cytotoxic effect of Cetuximab in resistance cells. It demonstrated Snail- LTβ axis plays a major role in Cetuximab resistance of HNSCC. However, the function of LTβ in cancer cell remains elusive. Previous studies show LTβ bind lymphotoxin-alpha to form heterotrimer- LTα1β2 on dendritic cell surface then bind to LTβ receptor in other cells which activated NFKB pathway. Our data found that Cetuximab resistance cells expressed higher NFKB downstream genes than wild-type cancer cells. We thought NFκB signaling is important for HNSCC acquired Cetuximab-resistant. We combined NFκB inhibitor and Cetuximab treatment showed great synergistic effect for Cetuximab-resistant cells. Taken together, this study presents a therapeutic option by enhancing Cetuximab effectiveness for Cetuximab-resistant patients.
Contents
English abstract…………………………………………………………..…...1
Chinese abstract.................................................................................................2
I. Introduction……………………………………………………………........3
1-1 Head and neck cancer…………………………………………………….....3
1-2 Epidermal growth factor receptor (EGFR)………………………………....3
1-3 EGFR expression in head and neck cancer………………………………....4
1-4 EGFR-targeted therapies and resistance………………………………….....5
1-5 Epithelial-mesenchymal transition (EMT)……………………………….....5
1-6 Lymphotoxin Beta (LTβ)…………………………………………………....6
1-7 LTβR-NFκB signaling…………………………………………………..…..7
II. Materials and Methods……………………………………………..…….8
2-1 Cell lines and plasmids…………………………………………………..…..8
2-2 Protein extraction and western blot analysis………………………………...8
2-3 Reverse transcription and quantitative PCR analysis…………………….....9
2-4 PCR, sequencing, and mutational analysis…………………………………10
2-5 Luciferase activity assay……………………………………………………10
2-6 Nuclear/cytosolic fractionation……………………………………………..11
2-7 Electrophoretic mobility shift assay (EMSA)………………………………11
2-8 Cell viability assay………………………………………………………….12
2-9 NFB activity Assays……………………………………………………….12
2-10 Statistical analysis……………………………………………………….....12
III. Results…………………………………………………………………….…13
3-1 EMT regulator Snail contributes to Cetuximab resistance of HNSCC……..13
3-2 Snail induces Lymphotoxinβ expression……………………………….…...14
3-3 LTβ is critical for Snail-induced Cetuximab resistance………………….........14
3-4 LTβ induces downstream NFκB pathway in Cetuximab resistance cells……..15
3-5 Knock-down of LTβ in Cetuximab resistance cells reduces NFκB signaling...16
3-6 LTβ contributes to EGFR signaling in Cetuximab resistant cells………..……16
3-7 Potential drug therapy for Cetuximab resistance cells……………………...…18
IV. Discussion…………………………………………………………...………..19
V. References……………………………………………………………………..22
VI. Figures...............................................................................................................26
Figure1. EMT regulator Snail contributes to Cetuximab resistance of HNSCC….…26
Figure2. Snail induces Lymphotoxinβ expression…………………………………..28
Figure3. LTβ is critical for Snail-induced Cetuximab resistance……………………30
Figure4. LTβ induces downstream NFkB pathway in Cetuximab resistance cells..…32
Figure5. Knock-down of LTβ in Cetuximab resistance cells attenuated NFB signaling……………………………………………………………………………...35
Figure6. LTβ contributes to EGFR signaling in Cetuximab resistant cells………….39
Figure7. Potential drug therapy for Cetuximab resistance cells…………………..…41
VII.Tables…………………………………………………………………………43
VIII. Supplemental Figures………………………………………………………..47

V. Reference
1. Curado, M.P. and M. Hashibe, Recent changes in the epidemiology of head and neck cancer. Curr Opin Oncol, 2009. 21(3): p. 194-200.
2. Koontongkaew, S., The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer, 2013. 4(1): p. 66-83.
3. Chen, Y.J., et al., Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci, 2008. 99(8): p. 1507-14.
4. Chung, C.H., et al., Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell, 2004. 5(5): p. 489-500.
5. Al-Sarraf, M., Treatment of locally advanced head and neck cancer: historical and critical review. Cancer Control, 2002. 9(5): p. 387-99.
6. Kalyankrishna, S. and J.R. Grandis, Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol, 2006. 24(17): p. 2666-72.
7. Grandis, J.R. and D.J. Tweardy, Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res, 1993. 53(15): p. 3579-84.
8. Rubin Grandis, J., et al., Inhibition of epidermal growth factor receptor gene expression and function decreases proliferation of head and neck squamous carcinoma but not normal mucosal epithelial cells. Oncogene, 1997. 15(4): p. 409-16.
9. Erjala, K., et al., Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res, 2006. 12(13): p. 4103-11.
10. Carter, C.A., R.J. Kelly, and G. Giaccone, Small-molecule inhibitors of the human epidermal receptor family. Expert Opin Investig Drugs, 2009. 18(12): p. 1829-42.
11. Bonner, J.A., et al., Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med, 2006. 354(6): p. 567-78.
12. Merlano, M. and M. Occelli, Review of cetuximab in the treatment of squamous cell carcinoma of the head and neck. Ther Clin Risk Manag, 2007. 3(5): p. 871-6.
13. Vermorken, J.B., et al., Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med, 2008. 359(11): p. 1116-27.
14. Yonesaka, K., et al., Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med, 2011. 3(99): p. 99ra86.
15. Wheeler, D.L., E.F. Dunn, and P.M. Harari, Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol, 2010. 7(9): p. 493-507.
16. Li, C., et al., Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene, 2009. 28(43): p. 3801-13.
17. Wheeler, D.L., et al., Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene, 2008. 27(28): p. 3944-56.
18. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
19. Peinado, H., D. Olmeda, and A. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer, 2007. 7(6): p. 415-28.
20. Kalluri, R. and E.G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84.
21. Witta, S.E., et al., Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res, 2006. 66(2): p. 944-50.
22. Skvortsova, I., et al., Epithelial-to-mesenchymal transition and c-myc expression are the determinants of cetuximab-induced enhancement of squamous cell carcinoma radioresponse. Radiother Oncol, 2010. 96(1): p. 108-15.
23. Holz, C., et al., Epithelial-mesenchymal-transition induced by EGFR activation interferes with cell migration and response to irradiation and cetuximab in head and neck cancer cells. Radiother Oncol, 2011. 101(1): p. 158-64.
24. Browning, J.L., et al., Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell, 1993. 72(6): p. 847-56.
25. Agyekum, S., et al., Expression of lymphotoxin-beta (LT-beta) in chronic inflammatory conditions. J Pathol, 2003. 199(1): p. 115-21.
26. Ware, C.F., Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol, 2005. 23: p. 787-819.
27. Bonizzi, G. and M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004. 25(6): p. 280-8.
28. Ghosh, S., M.J. May, and E.B. Kopp, NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998. 16: p. 225-60.
29. Dejardin, E., et al., The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity, 2002. 17(4): p. 525-35.
30. Qing, G., Z. Qu, and G. Xiao, Stabilization of basally translated NF-kappaB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kappaB2 p100. J Biol Chem, 2005. 280(49): p. 40578-82.
31. Haybaeck, J., et al., A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell, 2009. 16(4): p. 295-308.
32. Or, Y.Y., et al., Identification of a novel 12p13.3 amplicon in nasopharyngeal carcinoma. J Pathol, 2010. 220(1): p. 97-107.
33. Daller, B., et al., Lymphotoxin-beta receptor activation by lymphotoxin-alpha(1)beta(2) and LIGHT promotes tumor growth in an NFkappaB-dependent manner. Int J Cancer, 2011. 128(6): p. 1363-70.
34. Lui, V.W., et al., Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov, 2013. 3(7): p. 761-9.
35. Bissada, E., et al., Prevalence of K-RAS Codons 12 and 13 Mutations in Locally Advanced Head and Neck Squamous Cell Carcinoma and Impact on Clinical Outcomes. Int J Otolaryngol, 2013. 2013: p. 848021.
36. Young, N.R., et al., Molecular phenotype predicts sensitivity of squamous cell carcinoma of the head and neck to epidermal growth factor receptor inhibition. Mol Oncol, 2013. 7(3): p. 359-68.
37. Rajkumar, S.V., et al., Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol, 2005. 23(3): p. 630-9.
38. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15.
39. Fu, Y.X. and D.D. Chaplin, Development and maturation of secondary lymphoid tissues. Annu Rev Immunol, 1999. 17: p. 399-433.
40. Godwin, P., et al., Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol, 2013. 3: p. 120.
41. Wang, Z., et al., mTOR co-targeting in cetuximab resistance in head and neck cancers harboring PIK3CA and RAS mutations. J Natl Cancer Inst, 2014. 106(9).
42. Hsu, D.S., et al., Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell, 2014. 26(4): p. 534-48.
43. Lukashev, M., et al., Targeting the lymphotoxin-beta receptor with agonist antibodies as a potential cancer therapy. Cancer Res, 2006. 66(19): p. 9617-24.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top