跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:夏廣烜
研究生(外文):Kuang-Hsuan Hsia
論文名稱:應用直接式雷射沉積法於Stellite 6合金滾子成型
論文名稱(外文):Application of Direct Laser Deposition to Stellite 6 Rollers Forming
指導教授:蔡得民
指導教授(外文):Der-Min Tsay
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:多葉凸輪減速機、滾子盤重疊率直接式能量沉積單道熔覆多道熔覆
外文關鍵詞:Lobe cam reducerSingle-track claddingMulti-track overlapping claddingOverlapping rateDirect energy deposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
直接式能量沉積法屬於積層製造工法之一,製程中將金屬粉末輸送至金屬基板上方,同時以雷射光束燒熔,並滴落在金屬基板上之熔池,經快速冷卻、沉積與基板金屬結合,形成熔覆層。熔覆層之幾何外型會因為製程參數的不同,而有相異外型特徵,若能確保熔覆層的幾何品質,便能有效規劃加工製程,並提升材料的利用與減少加工時間。
本文聚焦於 Stellite 6 粉末於直接式能量沉積法之熔覆層幾何及後續應用於多葉凸輪減速機之滾子結構成型。針對三個參數控制變因:雷射功率、雷射掃掠速率和粉末質量流率,在選定之參數變數範圍內,於S45C基板上進行Stellite 6單道熔覆之實驗,並以熔覆層高、層寬和深度作為實驗品質依據,並篩選出適合使用者情境需求與積層修補策略之參數組合,得到接觸角大於90度、深度大於0.2 mm、稀釋度小於0.4與寬高比介於2至3之間的參數組合。根據單道實驗結果,進一步實施多道重疊實驗,規劃10%到50%的重疊率實驗,量測熔覆層輪廓後,以最大波紋輪廓值作為多道重疊熔覆層之品質依據,可選出符合實際應用效益的重疊率。
綜合以上實驗結果,應用在本研究最終載具多葉凸輪減速機的輸出滾子盤上,實際掃掠生成滾子盤上之滾子,並量測其尺寸精度、硬度與剪力強度;將多葉凸輪減速機組裝後,架設實驗平台,進行固定輸出負載測試,於空負載、10Nm、20Nm、30Nm的輸出下進行270至900 rpm的運轉測試,同時與使用市售規格品滾子的減速機進行優劣比較,以瞭解本研究之應用性與突破性。
Directed energy deposition is one of the categories in additive manufacturing. The metal powder is pushed through a nozzle where it is melted by laser beam, then it drops into the molten pool and deposits on the substrate. The cladding layer is sensitive to the process parameters. Therefore, the geometry of cladding layer is taken to verified which set of parameters has good quality. It could reduce the waste of cladding materials and manufacturing time in application by controlling the quality of the cladding layer.
Stellite 6 alloy powder is chosen to be the cladding material in this research, and the medium carbon steel S45C is chosen as the substrate material. In the single-track cladding experiment, three variables which have selected range are investigated: laser power, scan rate, and mass flow rate. As the result of measurement, the bead which is eligible to apply on multi-track overlapping cladding experiment should meet the four conditions: depth is greater than 0.2mm, dilution is less than 0.4, aspect ratio is between 2 to 3, and the contact angle is greater than 90 degrees. Accordingly, the overlapping rate of multi-track experiment can be set as the range from 10% to 50% . The quality is verified with the maximum waviness contour value of surface profiles. As the result, the process parameters could be applied on forming the rollers of turrets of lobe cam reducer. The profiles of forming rollers need to be measured, including the hardness, shear strength, and the dimensional accuracy. After that, setting up the experimental platform and assembling the cam reducer. The running test are within the range of 270-900rpm rotational speed, 0-30N-m output-torque. According to the test results of roller and reducer, the applicability and breakthrough of this research could be figured out.
論文審訂書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 xii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的與研究方法 4
1.4 論文架構 5
第二章 直接式能量沉積與多葉凸輪減速機 6
2.1 直接式能量沉積法 6
2.1.1 直接式能量沉積法製程介紹與比較 7
2.1.2 直接式雷射沉積加工參數 9
2.2 雷射光學與光纖雷射 10
2.2.1 雷射光學特性 10
2.2.2 光束品質 12
2.2.3 應用雷射源比較 12
2.3 多葉凸輪減速機 14
第三章 雷射熔覆參數實驗 16
3.1 實驗流程 16
3.2 實驗材料與設備 18
3.2.1 實驗材料 18
3.2.2 實驗設備 19
3.3 單道與多道掃掠之熔覆實驗 22
3.3.1 第一階段單道熔覆實驗 23
3.3.2 第二階段單道熔覆實驗 24
3.3.3 多道熔覆試驗 25
3.4 試片量測 27
3.4.1 熔覆層量測 27
3.4.2 單道熔覆實驗分析 29
3.4.3 多道熔覆實驗 40
第四章 多葉凸輪減速機測試 44
4.1 多葉凸輪減速機動力分析 44
4.2 輸出端滾子盤加工與幾何量測 49
4.2.1 多葉凸輪滾子盤加工 49
4.2.2 剪力、硬度測試與幾何量測 52
4.3 多葉凸輪減速機運轉測試 56
4.3.1 測試實驗 56
4.3.2 測試結果分析 57
4.4 多葉凸輪減速機結果討論 66
第五章 結論 68
參考文獻 69
[1] Li, Y., & Ma, J. (1997). “Study on overlapping in the laser cladding process.” Surface and Coatings Technology, 90(1-2), 1-5.
[2] Liu, C. Y., & Lin, J. (2003). “Thermal processes of a powder particle in coaxial laser cladding.” Optics & Laser Technology, 35(2), 81-86.
[3] Sun, S., Durandet, Y., & Brandt, M. (2005). “Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel.” Surface and Coatings Technology, 194(2-3), 225-231.
[4] Ocelík, V., De Oliveira, U., De Boer, M., & De Hosson, J. T. M. (2007). “Thick Co-based coating on cast iron by side laser cladding: Analysis of processing conditions and coating properties.” Surface and Coatings Technology, 201(12), 5875-5883.
[5] Dinda, G. P.,Dasgupta, A. K., & Mazumder, J. (2009). “Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability.”
Materials Science and Engineering: A, 509(1), 98-104.
[6] Tabernero, I., Lamikiz, A., Martínez, S., Ukar, E., & Figueras, J. (2011). “Evaluation of the mechanical properties of Inconel 718 components built by laser cladding.”
International Journal of Machine Tools and Manufacture, 51(6), 465-470.
[7] Sun, Y., Hao, M.(2012). “Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser. ” Optics and Lasers in Engineering, 50(7), 985-995.
[8] Cárcel, B., Serrano, A., Zambrano, J., Amigó, V., & Cárcel, A. C. (2014). “Laser cladding of TiAl intermetallic alloy on Ti6Al4V-process optimization and properties.”
Physics Procedia, 56, 284-293.
[9] Oliari, S. H., D’Oliveira, A. S. C. M., & Schulz, M. (2017). “Additive Manufacturing of H11 with Wire-Based Laser Metal Deposition.” Soldagem & Inspeção, 22(4), 466-479.
[10] 林宗儁, 2016, 多葉凸輪減速機構設計與動力分析, 國立中山大學機械與機電工程研究所碩士論文
[11] ASTM Committee F42 on Additive Manufacturing Technologies, & ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91 on Terminology. (2012). Standard Terminology for Additive Manufacturing Technologies. ASTM International.
[12] Picasso, M., Marsden, C. F., Wagniere, J. D., Frenk, A., & Rappaz M. (1994), A simple but realistic model for laser cladding, Metallurgical and Materials Transactions B, 25(2), 281-291.
[13] Bachmann, F., Peter, L., & Reinhart P., eds. (2007). High power diode lasers: technology and applications. Vol. 128. Springer.
[14] Stanislav, N. (2013). Laserové technologie.
[15] Ya, Wei. (2015). “Laser materials interactions during cladding: analyses on clad
formation, thermal cycles, residual stress and defects.” University Twente.
[16]楊國輝、黃宏彥,2001,雷射原理與量測概論。
[17]楊隆昌,2014,雷射發展的趨勢與應用,中工高雄會刊第22卷第1期。
[18] Dale, A. S., (2007). “The evolution of scanners for remote welding applications.” The Fabricator.
[23]雷射源模組. (2016). Retrieved from IPG Photonics: https://www.ipgphotonics.com/en/173/FileAttachment/YLR-070+Series+Datasheet.pdf
[24] Optomec, Inc. (2018). LENS Print Engine Deposition Head User Manual.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top