跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃為駿
研究生(外文):Huang Wei-Jiun
論文名稱:磷酸改質蔗糖衍生活性碳於電容去鹽之研究
論文名稱(外文):Phosphoric acid-modified activated carbon from sucrose for capacitive deionisation
指導教授:高肇郎
指導教授(外文):Kao Chao-Lang
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:104
中文關鍵詞:電容去鹽活性碳磷酸
外文關鍵詞:Capacitive deionizationActivated carbonPhosphoric acid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
電容去鹽是利用離子電吸附於相反電荷電極上去除水中的鹽類之技術,電極材料通常為碳材料,主要是因為其碳材料擁有高比表面積與導電性。活性碳(AC)由於其優異的導電性和高的表面積,已經受到廣泛研究。我的研究是以蔗糖為碳源,並添加不同量(50ml、60ml、70ml)的磷酸來改變活性碳表面孔結構,因磷酸含大量之氧官能基,利用氧官能基增加孔隙度。
由結果顯示,活性碳以70ml 磷酸改質性能為最佳,經循環伏安測試(5mV/s)可得到單位電容量為99.7 F/g,藉由Langmuir 吸附方程式分析對氯離子之飽和吸附量為4.5977 mg/g。
然而,為了提高CDI 性能,AC 電極仍需進一步改質。與原始AC相比,磷酸改質活性碳材料顯示改善的中孔率和高的電容量。此外,磷酸改質活性碳電極之循環穩定性及再生性非常好。
Capacitive deionization (CDI) is a technology for removal of salts from water by electrosorption of ions onto oppositely charged electrodes. The electrodes are usually made from carbon according to its high surface area and conductivity. Activated carbon (AC) has been intensively studied due to its excellent electrical conductivity and high surface area. In this study, a carbon electrode was fabricated using sucrose, and added different amount of phosphoric acid to modify its surface structure. There are a lot of oxygen functional groups in the phosphoric acid, and those oxygen functional groups can enhance its porosity.
The cyclic voltammetry profile of the PAC-70 electrode compared to the carbon electrode in the presence of 1 M NaCl, the values for specific capacitance were 99.7 F/g, for the same sample, the saturation monolayer adsorption capacity of Langmuir isotherms was 4.5977 mg/g.
However, further modification of the AC electrode is still necessary to improve the CDI performance. Compared to pristine AC, the PAC shows an improved mesoporosity and a higher electrosoptive capacity. Additionally, the PAC electrode good cycling stability plus excellent regeneration performance.
致謝 ..................................................... I
目錄 ................................................... III
圖目錄 .................................................. VII
表目錄 ................................................... XI
中文摘要 ................................................ XII
Abstract .............................................. XIII
第一章 緒論 ............................................... 1
1-1 前言 ................................................. 1
第二章 文獻回顧與基礎理論 .................................... 2
2-1 海水淡化的方法.......................................... 2
2-1-1 逆滲透 (Reverse osmosis,RO) ........................ 2
2-1-2 多級閃蒸 (Multi-stage flash,MSF) ................... 2
2-1-3 電透析 (Electrodialysis,ED) ........................ 3
2-1-4 離子交換 (Ion exchange) ............................. 3
2-1-5 電容去鹽 (Capacitive deionization,CDI) ............. 4
2-2 電容去鹽起源 ........................................... 7
2-3 電容去鹽電極材料 ...................................... 11
2-3-1 活性碳布 (Activated Carbon Cloth,ACC) ............. 12
2-3-2 奈米碳管 (Carbon nanotubes,CNTs) .................. 14
2-3-3 石墨烯 (Graphene) .................................. 19
2-3-4 活性碳纖維 (Activated Carbon Fiber,ACF) ............ 22
2-3-5 活性碳 (Activated Carbon,AC) ...................... 23
2-3-6 碳球 (Carbon Spheres,CSs) ......................... 25
2-3-7 碳海綿 (Carbon Sponge,CSG) ........................ 26
2-4 影響電容去鹽效果之因素 ................................. 28
2-5 電雙層原理 ........................................... 29
2-5-1 電雙層結構與原理 .................................... 30
2-6 比表面積分析-BET 氣體吸附理論 ........................... 33
2-6-1 氮氣等溫吸脫附曲線 ................................... 37
2-6-2 孔洞之分析 ......................................... 42
2-6-3 微孔結構分析法 ...................................... 43
2-6-4 BJH 分析之理論 ..................................... 45
2-7 電化學性能分析之原理 ................................... 46
2-7-1 循環伏安法(Cyclic Voltammetry,CV) .................. 46
2-7-2 恆電流充放電測試(Galvanostatic charge-discharge test) 48
2-8 磷酸(Phosphoric acid) ............................... 49
第三章 實驗藥品、設備與方法 ................................. 50
3-1 實驗藥品及儀器 ........................................ 50
3-2 分析儀器及參數 ........................................ 52
3-2-1 BET 比表面積分析儀 (Specific area analyzer) ......... 52
3-2-2 掃描式電子顯微鏡 (Scanning Electron Microscope) ..... 53
3-2-3 離子層析儀 (Ion Chromatograph) ..................... 54
3-2-4 循環伏安 (Cyclic Voltammetry) ...................... 55
3-2-5 充放電測試 (Galvanostatic charge-discharge test) ... 56
3-3 實驗方法 ............................................. 57
3-3-1 活性碳粉末之製備 .................................... 57
3-3-2 磷酸改質活性碳電極材料之製備 .......................... 58
3-3-3 電容去鹽電極之製備 ................................... 60
第四章 結果與討論 ......................................... 63
4-1 活性碳電極材料之分析 ................................... 63
4-1-1 比表面積分析 ........................................ 63
4-1-2 表面結構分析 ........................................ 65
4-1-3 循環伏安測試 ........................................ 66
4-1-4 小結 .............................................. 69
4-2 磷酸改質活性碳電極材料之製備分析 ......................... 69
4-2-1 比表面積分析 ........................................ 70
4-2-2 表面結構分析 ........................................ 72
4-2-3 循環伏安測試 ........................................ 74
4-2-4 小結 .............................................. 77
4-3 電容去鹽性能分析 ...................................... 77
4-4 循環穩定性分析 ........................................ 84
4-5 吸附等溫方程式分析 ..................................... 88
第五章 結論 .............................................. 93
5-1 結論 ................................................ 93
5-2 建議 ................................................ 95
參考文獻 ................................................. 96
中文
1. 鐘穎 活性炭纖維及其改性後的電極電吸附脫鹽,中山大學碩士學位論文,(2009)。
2. 李俊 碳氣凝膠/金屬氧化物複合電極材料的製備及應用研究,湘潭大學碩士學位論文,(2007),20。
3. 解利昕、李憑力、王世昌 海水淡化技術現狀及各種淡化方法評述,化工進展,22,(2003),1081-1084。
4. 許春玲、張小勇 電容吸附法脫鹽技術研究進展,廣州化工,39,(2011),12。
5. 李晶、賴延清、劉業翔 超級電容器碳電極材料的製備及性能研究,電池,36,(2006),332-334。
6. 蘇清源 石墨烯氧化物之特性與應用前景,物理雙月刊,(2011),163-167。
7. 張有義、郭蘭生 膠體及界面化學入門,高立圖書有限公司,(2001)。
8. 嚴繼民 吸附與凝聚固體的表面與孔,科學出版社,(1986)。
9. Huang, J., Cote, L. J., Kim, J., Tung, V. C., Luo, J., Kim, F., 舊材料的新見解-氧化石墨烯之界面活性,材料世界網,(2011),123-134。
英文
1. Afkhami, A., “Adsorption and electrosorption of nitrite on high-area carbon cloth:an approach to purification of water and waste-water samples”, Carbon, vol.41, (2003), pp.1320-1322,.
2. Ahn, H. J., Lee, J. H., Jeong, Y., Lee, J. H., Chi, C. S., Oh, H. J., “Nanostructured carbon cloth electrode for desalination from aqueous solutions”, Materials Science and Engineering:A, 449-451, (2007), 841- 845.
3. Anderson, M. A., Cudero, A. L., Palma, J., “Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices:will it compete?”, Electrochimica Acta, 55, (2010), 3845-3856.
4. C.-L. Yeh, H.-C. Hsi, K.-C. Li, C.-H. Hou, “Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio”, Desalination, 367, (2015), 60–68.
5. Chang, L. M., Duan, X. Y., Liu, W., “Preparation and electrosorption desalination performance of activated carbon electrode with titania”, Desalination, 270, (2011), 285-290.
6. Dandekar,U. S., Arabale, G., Vijayamohanan, K., “Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors”, Journal of Power Sources, 141, (2005), 198-203.
7. E. Jeong, M.-J. Jung, S.G. Lee, H.G. Kim, Y.-S. Lee, “Role of surface fluorine in improving the electrochemical properties of Fe/MWCNT electrodes”, Journal of Industrial and Engineering Chemistry, 43, (2016), 78-85.
8. Gregg, S. J., Sing, K. S. W., “Adsorption, Surface Area and Porosity”, Academic Press, (1982), New York.
9. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., Moulin, P., “Reverse osmosis desalination: Water sources, technology, and today's challenges”, Water Research, 43, (2009), 2317-2348.
10. Gao, Y., Pan, L., Li, H., Zhang, Y., Z. Zhang, Chen, Y., Sun, Z., “Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes”, Thin Solid Films, 517, (2009), 1616-1619.
11. Guo-Xian Li, Peng-Xiang Hou, Shi-Yong Zhao, Chang Liu, Hui-Ming Cheng, “A flexible cotton-derived carbon sponge for high-performance capacitive deionization”, Carbon, 101, (2016), 1-8.
12. Hamann, C. H., Hamnett, A., Vielstich, W., “Electrochemistry”, Wiley-Vch, New York, (1998).
13. Han, Y., Quan, X., Chen, S., Wang, S., Zhang, Y., “Electrochemical enhancement of adsorption capacity of activated carbon fibers and their surface physicochemical characterizations”, Electrochimica Acta, 52, (2007), 3075-3081.
14. Hou, C. H., Huang, J. F., Lin, H. R., Wang, B. Y., “Preparation of activated carbon sheet electrode assisted electrosorption process”, Journal of the Taiwan Institute of Chemical Engineers, 43, (2012), 473.
15. Ho, J. R., “Fabrication of transparent double-walled carbon nanotubes flexible matrix touch panel by laser ablation technique”, Optics & Laser Technology, 43, (2011), 1371-1376.
16. Huang, C. C., Su, Y. J., “Removal of copper ions from wastewater by dsorption/electrosorption on modified activated carbon cloths”, Journal of Hazardous Materials, 175, (2010), 477-483.
17. J. Liu, M. Lu, J. Yang, J. Cheng, W. Cai, “Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis”, Electrochim Acta, 151, (2015), 312–318.
18. K. Laxman, M.T.Z. Myint, R. Khan, T. Pervez, J. Dutta, “Effect of a semiconductor dielectric coating on the salt adsorption capacity of a porous electrode in acapacitive deionization cell”, Electrochim Acta, 166, (2015), 329–337.
19. Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., Pereira, C. F., “Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse”, Chemical Engineering Journal, 144, (2008), 42-50.
20. Kim, C., Lee, J., Kim, S., Yoon, J., “TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization ”, Desalination, 342, (2014), 70-74.
21. Kim, Y. J., Choi, J. H., “Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane”, Separation and Purification Technology, 71, (2010), 70-75.
22. Kim, Y. J., Choi, J. H., “Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer”, Water Research, 44, (2010), 990-996.
23. L. Liu, L. Liao, Q. Meng, B. Cao, “High performance graphene composite microsphere electrodes for capacitive deionization”, Carbon, 90, (2015), 75–84.
24. Li, H., Zou, L., Pan, L., Sun, Z., “Novel graphene-like electrodes for capacitive deionization”, Environmental Science and Technology, 44, (2010), 8692-8697.
25. Li, H., Gao, Y., Pan, L., Y. Zhang, Chen, Y., Sun, Z., “Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes”, Water Research, 42, (2008), 4923-4928.
26. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., Sun, Z., “A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization”, Journal of Electroanalytical Chemistry, 653, (2011), 40-44.
27. Li, H., Zou, L., Pan, L., Sun, Z., “Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization”, Separation and Purification Technology, 75, (2010), 8-14.
28. Li, X., “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, 324, (2009), 1312-1314.
29. Liang, P., Yuan, L., Yang, X., Zhou, S., Huang, X., “Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination”, Water Research, 47, (2013), 2523-2530.
30. Liu, Y., Pan L., Xu, X. Lu, T., Sun, Z., Chua, D. H.C., “Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes”, Electrochimica Acta, 130, (2014), 619-624.
31. Lota, G., Centeno, T. A., Frackowiak, E., “Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors”, Electrochim Acts, 53, (2008), 2210-2216.
32. Liu, P., Chung, C., Shao, H., Liang, T. M., Horng, R. Y., Ma, C. C. M., Chang, C., “Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization”, Electrochimica Acta, 96, (2013), 173-179.
33. M.-S. Park, K.H. Kim, M.-J. Kim, Y.-S. Lee, “NH3 gas sensing properties of a gassensor based on fluorinated graphene oxide : colloids and Surfaces A”, Physicochem. Eng. Aspects, 490, (2016), 104–109.
34. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, “V. Presser, Waterdesalination via capacitive deionization : what is it and what can we expectfrom it?”, Energy Environ. Sci., (2015), 2296–2319.
35. M.H. Park, Y.S. Yun, S.Y. Cho, N.R. Kim, H.-J. Jin, “Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors”, Carbon Lett., 19, (2016), 66–71.
36. Mattson, J. S., Mark, J. H. B., “Activated Carbon: Surface Chemistry and Adsorption from Solution” , Wiley-Vch, New York, (1998).
37. Nadakatti, S., Tendulkar, M., Kadam, M., “Use of mesoporou conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology”, Desalination, 268, (2011), 182-188.
38. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A., “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438, (2005), 197-200.
39. Oh, H. J., Lee, J. H., Ahn, H. J., Jeong, Y., Kim, Y. J., Chi, C. S., “Nanoporous activated carbon cloth for capacitive deionization of aqueous solution”, Thin Solid Films, 515, (2006), 220-225.
40. Ortiz, J. M., Sotoca, J. A., E. Exposito, Gallud, F., Garcia-Garcia, V., Montiel, V., Aldaz, A., “Brackish water desalination by electrodialysis : batch recirculation operation modeling”, Journal of Membrane Science, 252, (2005), 65-75.
41. Ozalp, N., Epstein, M., Kogan, A., “Cleaner pathways of hydrogen , carbon nano-materials and metals production via solar thermal processing”, Journal of Cleaner Production, 18, (2010), 900- 907.
42. Porada, S., Weinstein, L., Dash, R., Wal, A. V. D., Bryjak, M., Gogotsi, Y., Biesheuvel, P. M., “Water desalination using capacitive deionization with microporous carbon electrodes”, Applied Materials & Interfaces, 4, (2012), 1194.
43. Pan, L., Wang, X., Gao, Y., Zhang, Y., Chen, Y., Sun, Z., “Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes”, Desalination, 244, (2009), 139-143.
44. Park, B. H., Choi, J. H., “Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application”, Electrochimica Acta, 55, (2010), 2888-2893.
45. P. Puligundla, S.-E. Oh, C. Mok, “Microwave-assisted pretreatmenttechnologies for the conversion of lignocellulosic biomass to sugars andethanol : a review”, Carbon Lett., 17, (2016), 1–10.
46. Q. Yao, H.L. Tang, “Occurrence of re-adsorption in desorption cycles of capacitive deionization”, J. Ind. Eng. Chem., 34, (2016), 180–185.
47. Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, Piner, M., R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., Nguyen, S. T., Aksay, I. A., Prud'Homme, R. K., Brinson, L. C., “Functionalized graphene sheets for polymer nanocomposites”, Nature nanotechnology, 3, (2008), 329.
48. Rao, C. N. R., Biswas, K., Subrahmanyam, K. S., Govindaraj, A., “Graphene,the new nanocarbon”, Journal of Materials Chemistry, 19, (2009), 2457-2469.
49. Reith, F., Campbell, S.G., Ball, A.S., Pring, A., Southam, G., “Platinum in Earth surface environments”, Earth-Science Reviews, 131, (2014), 1-21.
50. Ryoo, M. W., Seo, G., “Improvement in capacitive deionization function of activated carbon cloth by titania modification”, Water Research, 37, (2003), 1527-1534.
51. Ryoo, M. W., Kim, J. H., G. Seo, “Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution”, Journal of Colloid and Interface Science, 264, (2003), 414-419.
52. R. Niu, H. Li, Y. Ma, L. He, J. Li, “An insight into the improved capacitivedeionization performance of activated carbon treated by sulfuric acid”, Electrochim. Acta, 176, (2015), 755–762.
53. R. Kumar, S. Sen Gupta, S. Katiyar, V.K. Raman, S.K. Varigala, T. Pradeep, A.Sharma, “Carbon aerogels through organo-inorganic co-assembly and theirapplication in water desalination by capacitive deionization”, Carbon, 99, (2016), 375–383.
54. Rui Niu, Haibo Li, Yulong Ma, Lijun He, Jin Li “An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid”, Electrochimica Acta, 176, (2015), 755–762.
55. Shanshan Zhao, Tingting Yan, Hui Wang, Guorong Chen, Lei Huang, Jianping Zhang, Liyi Shi, Dengsong Zhang, “High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization”, Applied Surface Science, 369, (2016), 460–469.
56. Semiat, R., “Energy Issues in Desalination Processes”, Environmental Science & Technology, 42, (2008), 8193-8201.
57. Seo, S., Jeon, H., Lee, J. K., Kim, G. Y., Park, D., Nojim, H., Lee, J., Moon, S. H., “Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications”, Water Research, 44, (2010), 2267-2275.
58. Sing, K. S. W., “ Reporting physisorption data for gas/solid systems wuth special reference to the determination of surfacw area and porosity”, Pure and Applied Chemistry, 57, (1985), 603-619.
59. Soffer, A., Folman, M., “The electrical double layer of high surface porous carbom electrode”, Journal of Electroanalytical Chemistry, 38, (1972), 25-44.
60. S. Porada, G. Feng, M. Suss, V. Presser, “Capacitive deionization in organicsolutions: case study using propylene carbonate”, RSC Adv., 6, (2016), 5865–5870.
61. Santamaría, R., Villar, I., Roldan, S., Ruiz, V., Granda, M., Blanco, C., Menéndez, R., “Capacitive Deionization of NaCl Solutions with Modified Activated Carbon Electrodes”, Energy Fuels, 24, (2010), 3329-3333.
62. Toles, C., Rimmer, S., Hower, J. C., “Production of activated carbons from a washington lignite using phosphoric acid activation”, Carbon, 34, (1996), 1419 -1426.
63. Tripathi, G., Tripathi, B., Sharma, M. K., Vijay, Y. K., Chandra, A., Jain, I.P., “A comparative study of arc discharge and chemical vapor deposition synthesized carbon nanotubes”, International journal of fhydrogen energy, 37, (2012), 3833-3838.
64. T. Wu, G. Wang, Q. Dong, B. Qian, Y. Meng, J. Qiu, “Asymmetric capacitivedeionization utilizing nitric acid treated activated carbon fiber as the cathode”, Electrochim. Acta, 176, (2015), 426–433.
65. Wang, X., Lee, J. S., Tsouris, C., DePaoli, D. W., Dai, S., “Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions”, Journal of Materials Chemistry, 20, (2010), 4602-4608.
66. Wang, L., Wang, M., Huang, Z. H., Cui, T., Gui, X., Kang, F., Wang, K., Wu, D., “Capacitive deionization of NaCl solutions using carbon nanotube sponge Electrodes”, Journal of Materials Chemistry, 21, (2011), 18295-18299.
67. Wang, S., Wang, D., Ji, L., Gong, Q., Zhu, Y., Liang, J., “Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes”, Separation and Purification Technology, 58, (2007), 12-16.
68. Welgemoed, T. J., Schutte, C. F., “Capacitive Deionization Technology : An alternative desalination solution”, Desalination, 183, (2005), 327-340.
69. Xiaolin, L., Guangyu, Z., Xuedong, B., Xiaoming, S., Xinran, W., Enge, W., Hongjie, D., “Graphene : Shoe of adhesive”, Nature nanotechnology, 3, (2008), 537-538.
70. Xu, Y., Zondlo, J. W., Finklea, H.O., Brennsteiner, A., “Electrosorption of uranium on carbon fibers as a means of environmental remediation”, Fuel Processing Technology, 68, (2000), 189-208.
71. Yang, J., L., Zou, Song, H., Hao, Z., “Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology”, Desalination, 276, (2011), 199- 206
72. Y. Wang, X. Han, R. Wang, S. Xu, J. Wang, “Preparation optimization on the coating-type polypyrrole/carbon nanotube composite electrode for capacitive deionization”, Electrochim. Acta, 182, (2015), 81–88.
73. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, L. Pan, “Review on carbon-based composite materials for capacitive deionization”, RSC Adv., 5, (2015), 15205–15225.
74. Zou, H. Li, L., Sun, L. Pan, Z., “Novel Graphene-Like Electrodes for Capacitive Deionization”, Environmental Science & Technology, 44, (2010), 8692-8697.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top