跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁景文
研究生(外文):CHING-WEN LIANG
論文名稱:運用數位影像關聯原理對物件輪廓邊緣量測方法之研發
論文名稱(外文):Development of object edge measurement method using digital image correlation principle
指導教授:林世聰林世聰引用關係陳亮嘉
指導教授(外文):Shyh-Tsong LinLiang-Chia Chen
口試委員:林志平何昭慶劉建宏劉正良
口試日期:2017-07-31
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:131
中文關鍵詞:邊緣偵測演算法三維物件輪廓隨機光斑影像數位影像關聯
外文關鍵詞:Edge detection algorithm3-D object profileRandom speckle imagesDigital Image Correlation (DIC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
這項研究提出適用於智能工具機之精準三維物件輪廓隨機光斑量測系統的發展,包括一個隨機雷射光斑光學探頭之設計和具創新的三維邊緣偵測演算法。數位影像關聯(digital image correlation, DIC)是一個廣泛運用於基準面內、外動態機械結構分析的全域光斑量測技術。然而直到今日,在數位影像關聯仍然存在準確邊緣偵測的關鍵問題,此乃肇因於兩個相鄰不同高度的邊緣周遭投射的隨機雷射光斑,受到陰影和繞射等影響而嚴重變異。一般來說,此種量測邊緣破碎的狀況很常在DIC三維量測結果中觀察到。為解決這個問題,本研究自行研製一個隨機雷射光斑的光學探頭來投射高品質的比對光斑樣式,並且開發全新的隨機光斑數位影像處理演算法,它是通過依照邊緣搜尋方向,採用新設計的邊界影像子集(subset)或是角落影像子集來進行邊緣搜尋,並提出一個調適邊緣閥值(adaptive edge threshold)來評估個別物件邊緣的搜尋結果,以確定具有正確高度的精準邊緣量測結果。以精準矩形塊規及一個經校準的圓形目標來驗證開發演算法的準確量測能量,量測結果以高準確度三次元量測儀(coordinate measuring machine,CMM)為基準比較顯示關鍵尺寸的最大量測誤差小於全量測範圍的3.2%,而一個標準差可以保持小於1%的範圍內,相較傳統數位影像關聯的結果,開發方法的結果至少改善了388%。
This study presents a development of precision 3-D profile speckle measurement system for intelligent machine tool including a compact random laser speckle measuring probe and a 3-D edge detection algorithm. Digital image correlation (DIC) has been surged as a full-field speckle measurement technique for in-plane and out-of-plane dynamic mechanical structure analyses. However, up to date, one of the key issues in DIC is still remained in boundary edge detection since a surface edge is not detectable between two discrete neighboring height jumps due to undesired pattern deformation caused by optical occlusion or diffraction. Generally, it is common to observe undesirable noisy measured data along measured surface edges obtained from the traditional DIC-based surface 3-D profilometry. To resolve this, a random laser speckle project optical probe is developed to produce high quality speckle patterns for achieving measuring accuracy while a novel random speckle images processing method is established by developing a new algorithm by employing both the boundary subset and the corner subset search to determine the best edge location as well as accurate height reconstruction. A rectangle gauge block and a pre-calibrated circle target were measured to verify the feasibility on accurate edge measurement of the methodology. The measured results are shown that the maximum measured error on critical dimension can be controlled less than 3.2% of the overall measuring range while one standard deviation can be kept within less than 1%. Compared to the measurement result of traditional DIC, the minimum improvement of developed method is better than 388%.
摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 9
1.3 預期研究成果 10
1.4 論文架構 11
第2章 文獻回顧 12
2.1 數位影像關聯 12
2.2 影像子集尺寸 17
2.3 光斑品質 20
2.4 影像子集形狀 29
2.5 立體視覺發展的影像比對方法 33
2.6 Kinect®的紅外線光斑 36
2.7 以樣式(pattern)量測三維形貌的方法 38
2.8 雷射光斑的光學原理 46
2.8.1 光斑成像 46
2.8.2 光斑尺寸 49
2.8.3 繞射 50
2.8.4 陰影 56
2.8.5 量測表面粗糙度對雷射光斑的影響 57
2.9 文獻回顧之總結 60
第3章 研究方法 64
3.1 三維雷射光斑量測系統設計及原理 64
3.2 雷射光斑設計及品質提昇 69
3.2.1 數位影像處理法強化光斑的評估 70
3.2.2 產生結構光斑方式的品質評估 72
3.2.3 光學元件對光斑品質影響的評估 74
3.3 雷射光斑量測的挑戰分析 82
3.3.1 傳統三維數位影像關聯遭遇的問題 82
3.3.2 邊緣處雷射光斑分析 86
3.4 精密三維表面邊緣偵測方法 89
3.4.1 概念及流程 89
3.4.2 調適品質閥值 94
3.4.3 初始邊緣點 94
3.4.4 調適邊緣搜尋閥值 96
3.4.5 精密邊緣搜尋 97
第4章 系統架構與實驗結果 101
4.1 實驗系統之架構設計 101
4.2 物件三維形貌重建及準確度分析 103
4.2.1 以經校正目標驗證量測精度 103
4.2.2 工件量測的可行性測試 109
4.2.3 自由曲面的能力測試 114
4.3 實驗結論 116
第5章 結論與未來展望 118
5.1 結論 118
5.2 未來展望 121
參考文獻 123
符號彙編 130
[1]Bruce D. Lucas, Takeo Kanade, "An iterative image registration technique with an application to stereo vision", IJCAI81, (1981) 674-679
[2]Marr, D. and T. Poggio., "A Computational Theory of Human Stereo Vision.", Proceedings of the Royal Society of London. Series B. Biological Sciences 204(1156): 301. (1979)
[3]R. Ishiyama, S. Sakamoto, J. Tajima, T. Okatani, and K. Deguchi, "Absolute phase measurements using geometric constraints between multiple cameras and projectors," Applied Optics, vol. 46, pp. 3528-3538, Jun 2007
[4]J. Tian and X. Peng, "Three-dimensional vision from a multisensing mechanism," APPLIED OPTICS, vol. 45, pp. 3003-3008, 2006
[5]Miles Hansard, Seungkyu Lee, Ouk Choi, Radu Horaud., "Time of Flight Cameras: Principles, Methods, and Applications.", Springer, pp.95, 2012
[6]Heritage, George L., Large, Andrew R. G., "Principles of 3D Laser Scanning", Wiley-Blackwell, pp.21, 2009
[7]Jason Geng, "Structured-light 3D surface imaging: a tutorial", Adv. Opt. Photon. 3, 128-160 (2011).
[8]E. Stoykova, G. Minchev, V. Sainov, "Fringe projection with a sinusoidal phase grating", APPLIED OPTICS, 48 (2009) 4774-4784.
[9]S. Zhang, P. Huang, "High-resolution, Real-time 3D Shape Acquisition", Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 3 (2004) 28-37.
[10]S. Zhang and S. T. Yau, "High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method," Opt Express, vol. 14, pp. 2644-9, Apr 3 (2006)
[11]P. S. Huang, "Color phase-shifting technique for three-dimensional shape measurement," Optical Engineering, vol. 45, p. 013602, (2006)
[12]J. Huo, Q. Wu, and X. Zeng, "A technique of phase-shifting for 3-D measurement using spectral-transform," Optics and Lasers in Engineering, vol. 51, pp. 1133-1137, (2013)
[13]O. A. Skydan, M. J. Lalor, and D. R. Burton, "Technique for phase measurement and surface reconstruction by use of colored structured light," Applied Optics, vol. 41, pp. 6104-6117, Oct 10 (2002)
[14]H. Dai, X. Su, "Shape measurement by digital speckle temporal sequence correlation with digital light projector", Optical Engineering, 40 (2001) 793-800.
[15]M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, and D. Dirksen, "Three-dimensional data acquisition by digital correlation of projected speckle patterns," Applied Physics B, vol. 99, pp. 449-456, (2010)
[16]E. Valero, V. Micó, Z. Zalevsky, and J. García, "Depth sensing using coherence mapping," Optics Communications, vol. 283, pp. 3122-3128, (2010)
[17]Qican Zhang, Xianyu Su, Liqun Xiang, Xuezhen Sun, "3-D shape measurement based on complementary Gray-code light", Optics and Lasers in Engineering, Volume 50, Issue 4, 2012, Pages 574-579
[18]G. Sansoni, M. Carocci, R. Rodella, "Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors", APPLIED OPTICS, 38 (1999) 6565-6573.
[19]Masanori Idesawa, Toyohiko Yatagai, and Takashi Soma, "Scanning moiré method and automatic measurement of 3-D shapes," Appl. Opt. 16, 2152-2162 (1977)
[20]P.S. Huang, H. Guo, P.S. Huang, T. Yoshizawa, K.G. Harding, "3-D shape measurement by use of a modified Fourier transform method", Two- and Three-Dimensional Methods for Inspection and Metrology VI, 7066 (2008) 70660E70661-70660E70668.
[21]Mitsuo Takeda, Hideki Ina, and Seiji Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982)
[22]M. Takeda and K. Mutoh, "Fourier-transform profilometry for the automatic-measurement of 3-Dobject shapes," Applied Optics, vol. 22, no. 24, pp. 3977-3982, (1983)
[23]R. Onodera and Y. Ishii, "Two-wavelength interferometry that uses a Fourier-transform method," Applied Optics, vol. 37, pp. 7988-7994, Dec 1 1998
[24]M. Takeda, Q. Gu, M. Kinoshita, H. Takai, Y. Takahashi, "Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations", APPLIED OPTICS, 36 (1997) 5347-5354.
[25]Hamed Sarbolandi, Damien Lefloch, Andreas Kolb, "Kinect range sensing: Structured-light versus Time-of-Flight Kinect", Computer Vision and Image Understanding, Volume 139, Pages 1-20, 2015
[26]M. Bueno, L. Díaz-Vilariño, J. Martínez-Sánchez, H. González-Jorge, H. Lorenzo, P. Arias, "Metrological evaluation of KinectFusion and its comparison with Microsoft Kinect sensor", Measurement, Volume 73, Pages 137-145, 2015
[27]Khoshelham, K.; Elberink, S.O. "Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications". Sensors 2012, 12, 1437-1454.
[28]M.R. Andersen, T. Jensen, P. Lisouski, A.K. Mortensen, M.K. Hansen,T. Gregersen and P. Ahrendt, "Kinect Depth Sensor Evaluation for Computer Vision Applications", Electrical and Computer Engineering, Aarhus University,Technical report ECE-TR-6 (2012).
[29]Peters W.H. and Ranson W.F., "Digital imaging techniques in experimental stress analysis", Opt. Eng. 21 427–31. 1981
[30]Chu, T. C. and Ranson, W. F. and Sutton, M. A., "Applications of digital-image-correlation techniques to experimental mechanics", Exp. Mech.25 232–44. (1985)
[31]Bruck, H. A. and McNeill, S. R. and Sutton, M. A. and Peters, W. H., "Digital image correlation using Newton-Raphson method of partial differential correction", Exp. Mech.29 261–67. (1989)
[32]Sutton, M.A., Orteu, J.J., Schreier, H.W., " Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications", New York: Springer, (2009)
[33]Bing Pan, Kemao Qian, Huimin Xie and Anand Asundi, "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review", Meas. Sci. Technol. 20 062001(2009).
[34]Pan B, Xie H, Guo Z, Hua T; "Full-field strain measurement using a two-dimensional savitzky-golay digital differentiator in digital image correlation", Opt. Eng. 0001; 46(3):033601-033601-10.
[35]J.A. Leendertz, "Interferometric displacement measurement on scattering surfaces utilizing speckle effect", Journal of Physics E: Scientific Instruments.3-3, p214, (1970)
[36]Mikael Sjödahl and Per Synnergren, "Measurement of shape by using projected random patterns and temporal digital speckle photography," Appl. Opt. 38, 1990-1997 (1999).
[37]Javier García, Zeev Zalevsky, Pascuala García-Martínez, Carlos Ferreira, Mina Teicher, and Yevgeny Beiderman, "Three-dimensional mapping and range measurement by means of projected speckle patterns," Appl. Opt. 47, 3032-3040 (2008)
[38]Sun Yaofeng, John H.L. Pang, "Study of optimal subset size in digital image correlation of speckle pattern images", Optics and Lasers in Engineering Vol 45, 967–974 (2007).
[39]Bing Pan, Huimin Xie, Zhaoyang Wang, Kemao Qian, and Zhiyong Wang, "Study on subset size selection in digital image correlation for speckle patterns", Opt. Express 16, 7037-7048 (2008).
[40]D. Hang, G. M. Hassan, C. MacNish and A. Dyskin, "Characteristics of Color Digital Image Correlation for Deformation Measurement in Geomechanical Structures," 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, QLD, 2016, pp. 1-8.

[41]Tao Hua, Huimin Xie, Simon Wang, Zhenxing Hu, Pengwan Chen, Qingming Zhang, "Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation", Optics & Lasers Technology Vol 43, 9–13 (2011).
[42]Bing Pan, Zixing Lu, Huimin Xie, "Mean intensity gradient - An effective global parameter for quality assessment of the speckle patterns used in digital image correlation", Optics and Lasers in Engineering Vol 48, 469–477 (2010).
[43]G. Crammond, S.W.Boyd, J.M.Dulieu-Barton,"Speckle pattern quality assessment for digital image correlation", Optics and Lasers in Engineering Vol 51, 1368–1378 (2013)
[44]Braga RA, Jr., González-Peña RJ; "Accuracy in dynamic laser speckle: optimum size of speckles for temporal and frequency analyses", Opt. Eng. 0001;55(12):121702.
[45]Bing Pan, "Bias error reduction of digital image correlation using Gaussian pre-filtering", Optics and Lasers in Engineering, Vol. 51, Issue 10, Pages 1161-1167, 2013
[46]David Lecompte and Sven Bossuyt and Steven Cooreman and Hugo Sol and Johnny Vantomme, "Study and generation of optimal speckle patterns for DIC", Proc. of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Springfield, Massachusetts, 3-6 June, pp. 312, 2007
[47]M. Fazzini, S. Mistou, O. Dalverny, L. Robert, Study of image characteristics on digital image correlation error assessment, Optics and Lasers in Engineering, Volume 48, Issue 3, Pages 335-339, (2010)
[48] J. Poissant, F. Barthelat, " A Novel “Subset Splitting” Procedure for Digital Image Correlation on iscontinuous Displacement Fields", Experimental Mechanics 50:353–364 (2010).
[49]Corneliu Cofaru, WilfriedPhilips, Wim Van Paepegem, "A novel specklepattern—Adaptive digital image correlation approach with robust strain calculation", Optics and Lasers in Engineering Vol 50, 187–198 (2012).
[50]Kokichi Sugihara, "Three principles in stereo vision ", Advanced Robotics, Vol. 1-4, pages 391-400, (1986)
[51]Stefano Mattoccia, "Stereo Vision: Algorithms and Applications. " DISI, University of Bologna. 2013
[52]T. Kanade and M. Okutomi, "A stereo matching algorithm with an adaptive window: theory and experiment," Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, 1991, pp. 1088-1095 vol.2.
[53]A. Fusiello, V. Roberto and E. Trucco, "Efficient stereo with multiple windowing," Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, 1997, pp. 858-863.
[54]Hirschmüller, H., Innocent, P.R. & Garibaldi, "Real-Time Correlation-Based Stereo Vision with Reduced Border Errors." J. International Journal of Computer Vision (2002) 47: 229.
[55]Freedman, B., et al. "Depth mapping using projected patterns", US 8493496 B2, 2013
[56]Alexander Shpunt, et al. "Three-Dimensional Sensing Using Speckle Patterns", US 2009/0096783 A1
[57]Martin Schaffer, Marcus Grosse, and Richard Kowarschik, "High-speed pattern projection for three-dimensional shape measurement using laser speckles," Appl. Opt. 49, 3622-3629, 2010
[58]A. Wiegmann, H. Wagner, and R. Kowarschik, "Human face measurement by projecting bandlimited random patterns," Opt. Express 14, 7692-7698, 2006
[59]Huang YH, Quan CC, Tay CJ, Chen LJ, "Shape measurement by the use of digital image correlation", Opt. Eng. 0001;44(8):087011-087011-7
[60]William Lohry and Song Zhang, "High-speed absolute three-dimensional shape measurement using three binary dithered patterns," Opt. Express 22, 26752-26762, 2014
[61]Guijin Wang, Xuanwu Yin, Xiaokang Pei, and Chenbo Shi, "Depth estimation for speckle projection system using progressive reliable points growing matching", Appl. Opt. 52, p.p. 516-524, 2013
[62]Yin X, Wang G, Shi C, Liao Q; "Efficient active depth sensing by laser speckle projection system", Opt. Eng. 0001;53(1):013105
[63]Harvent, J. and Coudrin, B. and Br`ethes, L. and Orteu, J.-J. and Devy, M., "Shape Measurement Using a New Multi-step Stereo-DIC Algorithm That Preserves Sharp Edges", Experimental Mechanics, Vol. 55-1, pages 167-176, 2015
[64]Hector J . Rabal and Roberto A . Braga, "Dynamic Laser Speckle and Applications", CRC Press 2008
[65]J. W. Goodman, "Speckle Phenomena in Optics: Theory and Applications", Roberts & Company, Englewood, 2007
[66]Roberto Brunelli, "Template Matching Techniques in Computer Vision: Theory and Practice", Wiley 2009
[67]S. Takahashi, H.Y., D. Fujii, R. Kudo, K. Takamasu, "A novel dark field in-process optical inspection method for micro-openings on mirrored surfaces beyond the diffraction limit using active phase control". CIRP Annals - Manufacturing Technology, 2014. 63/1: pp. 465-468.
[68]Jianxin Gao, Wei Xu, Jianping Geng, "3D shape reconstruction of teeth by shadow speckle correlation method", Optics and Lasers in Engineering Vol 44, 455–465 (2008).
[69]Shi Q, Xi N, Zhang C., "Develop a Robot-Aided Area Sensing System for 3D Shape Inspection", ASME. J. Manuf. Sci. Eng. 2010;132(1).
[70]Andres Sanin, Conrad Sanderson, Brian C. Lovell, "Shadow detection: A survey and comparative evaluation of recent methods", Pattern Recognition, Volume 45, Issue 4, 2012, Pages 1684-1695
[71]Scott Wehrwein and Kavita Bala and Noah Snavely, "Shadow Detection and Sun Direction in Photo Collections", Proceedings of 3DV, 2015
[72]Y. G. Leclerc and A. F. Bobick, "The direct computation of height from shading", Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, HI, 1991, pp. 552-558.
[73]Ruo Zhang and Mubarak Shah, "Shape from intensity gradient," in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 29, no. 3, pp. 318-325, May 1999.
[74]Pino A, Pladellorens J, Cusola O, Caum J; "Roughness measurement of paper using speckle". Opt. Eng. 0001;50(9):093605-093605-5.
[75]Oleg V. Angelsky, Peter P. Maksimyak, Vasyl V. Ryukhtin, and Steen G. Hanson, "New feasibilities for characterizing rough surfaces by optical-correlation techniques," Appl. Opt. 40, 5693-5707 (2001)
[76]Welford, W. T. "Laser speckle and surface roughness." Contemporary Physics 21(4): 401-412. 1980
[77]A.L. Sampaio, D.C. Lobão, L.C.S. Nunes, P.A.M. dos Santos, L. Silva, J.A.O. Huguenin, "Hurst exponent determination for digital speckle patterns in roughness control of metallic surfaces", Optics and Lasers in Engineering, Volume 49, Issue 1, 2011, Pages 32-35
[78]B. Dhanasekar, N. Krishna Mohan, Basanta Bhaduri, B. Ramamoorthy, "Evaluation of surface roughness based on monochromatic speckle correlation using image processing", Precision Engineering, Volume 32, Issue 3, 2008, Pages 196-206
[79]J.B. Meireles, L. da Silva, D.P. Caetano, J.A.O. Huguenin, "Effect of metallic surface roughness on the speckle pattern formation at diffraction plane", Optics and Lasers in Engineering, Volume 50, Issue 12, 2012, Pages 1731-1734
[80]J. Weickmann, A. Liedl, P. F. Brenner and A. Weckenmann, “Reconstruction of noisy measured sharp edges at thin sheet metal components,” 6th International Workshop on Advanced Optical Metrology Springer, 2009, pp. 180-184.
[81]Phillip Reu, "Hidden Components of 3D-DIC", Exp. Mech.36 3–5. (2012)
[82]S. R. McNeil, M. A. Sutton, Z. Miao and J. Ma, "Measurement of Surface Profile Using Digital Image Correlation", Experimental Mechanics Vol. 37, pages 13-20, (1997)
[83]D. Lecompte, A. Smits, S. Bossuyt, "Quality assessment of speckle patterns for digital image correlation", Optics and Lasers in Engineering, Vol. 44(11), pages 1132-1145, (2006)
[84]G. Stoilov, V. Kavardzhikov, D. Pashkouleva, "A comparative study of random patterns for digital image correlation", Journal of Theoretical and Applied Mechanics, Sofia, vol. 42, No. 2, pp. 55–66, (2012)
[85]M. Basu, "Gaussian-based edge-detection methods-a survey," in IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 32, no. 3, pp. 252-260, Aug 2002.
[86]Gafar, M.F. and Hemayed, E.E., "Surface Area Distribution Descriptor for object matching", J. Adv. Res., vol. 1, no. 3, pp. 233–24, Jul. 2010

[87]M. Tsai and C. Hungb, "Development of a high-precision surface metrology system using structured light projection", Measurement, vol. 38, no. 3, 2005, pp. 236-247.
[88]J. Salvi, J. Pag and J. Batlle, "Pattern codification strategies in structured light systems", Pattern Recogn., vol. 37, no. 4, 2004, pp. 827-849.
[89]J. Xu, N. Xi, C. Zhang, Q. Shi and J. Gregory, "Real-time 3D shape inspection system of automotive parts based on structured light pattern", Optics Laser Technology, vol. 43, 2011, pp. 1-8.
[90]Jin, H. and Bruck, H.A., "Pointwise digital image correlation using genetic algorithm", Experimental Techniques Vol. 29, pages 36-39, (2005)
[91]T. Iwai, N. Takai, and T. Asakura, "Dynamic statistical properties of laser speckle produced by a moving diffuse object under illumination of a Gaussian beam," J. Opt. Soc. Am. 72, 460-467 (1982)
[92]Manh Trung, Le & Chen, Liang-Chia & Lin, Chih-Jer, "Reconstruction of accurate 3-D surfaces with sharp edges using digital structured light projection and multi-dimensional image fusion". Optics and Lasers in Engineering. 96. 17-34. 10.1016, 2017
[93]Liang-Chia Chen, Ching-Wen Liang, Ding-Coung Hoang, Duc-Hieu Duong, Chin-Sheng Chen, "A novel feature detection method using multi-dimensional image fusion for automated optical inspection on critical dimension", Journal of Chinese Society of Mechanical Engineers, 2016
[94]Liang-Chia Chen, Ching-Wen Liang, Xuan-Loc Nguyen, Shyh-Tsong Lin, "Novel Range Image Segmentation Using Region-Growing and Surface Classification", Journal of Chinese Society of Mechanical Engineers, 2017
[95]Liang-Chia Chen, Ching-Wen Liang, Huan-Yu Tseng, Shyh-Tsong Lin, "Accurate 3-D Surface Profilometry Using Novel Boundary Edge Detection on Digital Image Correlation", Key Engineering Materials, 2016
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top