|
Chapter 1
[1.1] E. Fortunato, P. Barquinha, R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater., vol. 24, no. 22, pp. 2945-2986, Jun. 2012. [1.2] Toshio Kamiya, Kenji Nomura, and Hideo Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, p. 044305, 2010. [1.3] M. Shur, M. Hack, and G Shaw, “A New analytic model for amorphous silicon thin film transistors,” J. Appl. Phys., vol. 66, no. 7, pp. 3371-3380, 1989. [1.4] Kenji Nomura, Akihiro Takagi, Toshio Kamiya, Hiromichi Ohta, Masahiro Hirano, and Hideo Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,” Jpn. J. Appl.Phys., vol. 45, no. 5B, pp. 4303-4308, 2006. [1.5] Hisato Yabuta, Masafumi Sano, Katsumi Abe, Toshiaki Aiba, Tohru Den, and Hideya Kumomi, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. vol. 89, no. 11, p. 112123, 2006. [1.6] X. Yu, J.Ma, F. Ji, Y. Wang, X.Zhang, C.Cheng, and H. Ma, “Preparation and properties of ZnO:Ga films prepared by r.f. magnetron sputtering at low temperature,” Applied Surface Science, vol. 239, no. 2, pp. 222-226, 2005. [1.7] Satoshi Masuda, Ken Kitamura, Yoshihiro Okumura, and Shigehiro Miyatake, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” Journal of Applied Physics, vol. 93, no. 3, p. 1624, 2003. [1.8] Seok-Jun Seo, Chaun Gi Choi, Young Hwan Hwang and Byeong-Soo Bae, “High performance solution-processed amorphous zinc tin oxide thin film transistor,” Journal of Physics D: Applied Physics, vol. 42, no. 3, p. 035016, 2008. [1.9] E.Tokumitsu, E.Tokumitsu and T.Miyasako “Use of ferroelectric gate insulator for thin film transistors with ITO channel,” Microelectronic Engineering, vol. 80, pp .305-308, 2005. [1.10] Pradipta K. Nayak, M. N. Hedhili, Dongkyu Cha and H. N. Alshareef, “High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric,” Appl. Phys. Lett., vol. 103, no. 3, p. 033518, 2013. [1.11] Zhang, XinAn; Zhai, JunXia; Yu, XianKun; Zhu, RuiJuan; Zhang, WeiFeng, “Effect of Annealing Temperature on the Performance of SnO2 Thin Film Transistors Prepared by Spray Pyrolysis,” Journal of Nanoscience and Nanotechnology, vol. 15, no. 8, pp. 6183-6187, 2015. [1.12] Gwang Jun Lee, Joonwoo Kim, Jung-Hye Kim, Soon Moon Jeong, Jae Eun Jang and Jaewook Jeong, “ High performance, transparent a-IGZO TFTs on a flexible thin glass substrate,” Semiconductor Science and Technology, vol. 29, no. 3, p.035003, 2014. [1.13] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,”Nature (London) 432, pp. 488-492, 2004. [1.14] H. Hosono, M. Yasukawa and H. Kawazoe “Novel oxide amorphous semiconductors: transparent conducting amorphous oxides,”Journal of Non- Crystalline Solids, vol. 203, pp. 334-344, 1996. [1.15] H. Hideo, “Ionic Amorphous Oxide Semiconductors: Material Design, Carrier Transport, and Device Application,” Journal of Non-Crystalline Solids, vol. 352, no. 9-20, pp. 851-858, 2006. [1.16] E. S. Sundholm, “Amorphous Oxide Semiconductor Thin-film Transistor Ring Oscillators and Material Assessment,” Oregon State University, 2010. [1.17] Jin-Seong Park, H. Kim, and Il-Doo Kim,“Overview of electroceramic materials for oxide semiconductor thin film transistors,” Journal of Electroceramics, vol. 32, no. 2-3, pp. 117-140, 2014. [1.18] Wantae Lim, Yu-Lin Wang, Fan Ren, D. P. Norton,“Room-Temperature-Deposited Indium-Zinc Oxide Thin Films with Controlled Conductivity”, Electrochem Solid-State Lett., vol. 10, no. 9, pp. 267-269, 2007. [1.19] G. D. Wilk, “High-κ Gate Dielectrics: Current Status and Materials Properties Considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243-5273, 2001 [1.20] Yee-Chia Yeo, Tsu-Jae King and Chenming Hu,“MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations,” IEEE Transactions on Electron Devices, vol. 50, no. 4, pp. 1027-1035, 2003. [1.21] J. Robertson, “High Dielectric Constant Oxides,” Eur. Phys. J. Appl. Phys., vol. 28, no. 3, pp. 265-291, 2004. [1.22] G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-κ Gate Dielectrics: Current Status and Materials Properties Considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243-5273, 2001. [1.23] J. Robertson, “High Dielectric Constant Oxides,” The European Physical Journal Applied Physics Letters, vol. 28, no. 3, pp. 265-291, 2004. [1.24] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M Stork, M. Zeitzoff, and J. C. Woo, “The Impact of High-κ Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFETs,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999. [1.25] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal Stability and Structural Characteristics of HfO2 Films on Si (100) Grown by Atomic-layer Deposition,” Applied Physics Letters, vol. 81, no. 472, pp. 472-474, 2002. [1.26] V. Mikhelashvili, and G. Eisenstein, “Effects of Annealing Conditions on Optical and Electrical Characteristics of Titanium Dioxide Films Deposited by Electron Beam Evaporation,” Applied Physics Letters, vol. 89, no. 6, pp. 3256-3269, 2001. [1.27] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal Stability and Structural Characteristics of HfO2 Films on Si (100) Grown by Atomic-layer Deposition,” Applied Physics Letters, vol. 81, no. 472, pp. 472-474, 2002. [1.28] In-Tak Cho, Woo-Seok Cheong, Chi-Sun Hwang, Jeong-Min Lee, Hyuck-In Kwon and Jong-Ho Lee, “Comparative Study of the Low-Frequency-Noise Behaviors in a-IGZO Thin-Film Transistors with Al2O3 and Al2O3/SiNx Gate Dielectrics,” IEEE Electron Device Letters, vol. 30, no. 8, pp. 828-830, 2009. [1.29] Rongsheng Chen, Wei Zhou, Meng Zhang and Hoi Sing Kwok, “High performance self-aligned top-gate ZnO thin film transistors using sputtered Al2O3 gate dielectric,” Thin Solid Films, vol. 520, no. 21, pp. 6681-6683, 2012. [1.30] Rongsheng Chen, Wei Zhou, Meng Zhang and Hoi Sing Kwok, “Self-aligned top-gate InGaZnO thin film transistors using SiO2/Al2O3 stack gate dielectric,” Thin Solid Films, vol. 548, no. 2, pp. 572-575, 2013. [1.31] W. S. Shiha, S. J. Youngb,z, L. W. Jia,z, W. Waterb and H. W. Shiua, “TiO2-Based Thin Film Transistors with Amorphous and Anatase Channel Layer,” The Electrochemical Society, vol. 158, no. 6, pp. 609-611, 2011. [1.32] Ming-Kwei Lee, Hung-Chang Lee and Chih-Min Hsu, “High dielectric constant TiO2 film grown on polysilicon by liquid phase deposition,” Materials Science in Semiconductor Processing, vol. 10, no. 2-3, pp. 61-67, 2007. [1.33] W.S.Shih, S.J.Young, L.W.Ji, W.Water, T.H.Meen, K.T.Lam, J.Sheen and W.C.Chu, “Thin film transistors based on TiO2 fabricated by using radio-frequency magnetron sputtering,” Journal of Physics and Chemistry of Solids, vol. 71, no. 12, pp. 1760-1762, 2010. [1.34] Young-Je Cho, Ji-Hoon Shin, S.M.Bobade, Young-Bae Kim and Duck-Kyun Choi, “Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors,” Thin Solid Films, vol. 517, no. 14, pp. 4115-4118, 2009. [1.35] Santosh M.Bobade, Ji-Hoon Shin, Young-Je Cho, Jung-Sun You and Duck-Kyun Choi, “Room temperature fabrication Oxide TFT with Y2O3 as a gate oxide and Mo contact,” Applied Surface Science, vol. 255, no. 17, pp. 7831-7833, 2009. [1.36] Carmen Bartic, Henri Jansen, Andrew Campitelli and Staf Borghs, “Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors,” Organic Electronics, vol. 3, no. 2, pp. 65-72, 2002. [1.37] T.Kallfass and E.Lueder, “High voltage thin film transistors manufactured with photolithography and with Ta2O5 as the gate oxide,” Thin Solid Films, vol. 61, no. 2, pp. 259-264, 1979. [1.38] Jae Sang Lee, Seongpil Chang, Sang-Mo Koo and Sang Yeol Lee, “High- Performance a-IGZO TFT With ZrO2 Gate Dielectric Fabricated at Room Temperature,” IEEE Electron Device Letters, vol. 31, no. 3, pp. 225-227, 2010. [1.39] Si Joon Kim, Doo Hyun Yoon, You Seung Rim and Hyun Jae Ki, “Low-Temperature Solution-Processed ZrO2 Gate Insulators for Thin-Film Transistors Using High-Pressure Annealing,” Electrochem. Solid-State Lett., vol. 14, no. 11, pp. 35-37, 2011. [1.40] Sun Jin Yun, Jae Bon Koo, Jung Wook Lim and Seong Hyun Kim, “Pentacene- Thin Film Transistors with ZrO2 Gate Dielectric Layers Deposited by Plasma-Enhanced Atomic Layer Deposition,” Electrochem. Solid-State Lett., vol. 10, no. 3, pp. 90-93, 2007 [1.41] Longyan Yuan, Xiao Zou, Guojia Fang, Jiawei Wan, Hai Zhou, and Xingzhong Zhao, “High-Performance Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors With HfOxNy/HfO2/HfOxNy Tristack Gate Dielectrics,” IEEE Electron Device Letters, vol. 32, no. 1, pp. 42-44, 2011. [1.42] Xiao Zou, Guojia Fang, Longyan Yuan, Xingsheng Tong and Xingzhong Zhao, “A comparative study of amorphous InGaZnO thin-film transistors with HfOxNy and HfO2 gate dielectrics,” Semicond. Sci. Technol, vol. 25, no. 5, p. 055006, 2010. [1.43] Young Mo Kim, Chulkwon Park, Useong Kim, Chanjong Ju and Kookrin Char, “High-mobility BaSnO3 thin-film transistor with HfO2 gate insulator,” Applied Physics Express, vol. 9, no. 1, p. 011201, 2015. [1.44] L. X. Qian, P. T. Lai, and W. M. Tang, “Effects of Ta incorporation in La2O3 gate dielectric of InGaZnO thin-film transistor,” Appl. Phys. Lett., vol. 104, no. 12, p. 123505, 2014. [1.45] X. D. Huang, J. Q. Song and P. T. Lai, “Effects of Thermal Annealing on La2O3 Gate Dielectric of InGaZnO Thin-Film Transistor,” ECS Solid State Lett., vol. 4, no. 9, pp. 44-46, 2015. [1.46] Woong-Sun Kim, Yeon-Keon Moon, Kyung-Taek Kim,Sae-Young Shin and Jong-Wan Park, “Improvement in the bias stability of zinc oxide thin-film transistors using Si3N4 insulator with SiO2 interlayer,” Thin Solid Films, vol. 520, no. 1, pp. 578-581, 2011. [1.47] Ji Sim Jung, Sang-Ho Rha, Un Ki Kim, Yoon Jang Chung, Yoon Soo Jung, Jung-Hae Choi and Cheol Seong Hwang, “The charge trapping characteristics of Si3N4 and Al2O3 layers on amorphous-indium-gallium-zinc oxide thin films for memory application,” Appl. Phys. Lett., vol. 100, no. 18, p. 183503, 2012. [1.48] Kow-Ming Chang, Po-Ching Ho, Atthaporn Ariyarit, Kuo-Hui Yang, Jui-Mei Hsu, Chin-Jyi Wu, and Chia-Chiang Chang, “Enhancement of the light-scattering ability of Ga-doped ZnO thin filmsusing SiOx nano-films prepared by atmospheric pressure plasma deposition system,” Thin Solid Films, vol. 548, no. 2, pp. 460-464, 2013 [1.49] X Yang, M Moravej, S E Babayan, G R Nowling and R F Hicks, “High stability of atmospheric pressure plasmas containing carbon tetrafluoride and sulfur hexafluoride,” Plasma Sources Science and Technology, vol. 14, no. 3, p. 412, 2005. [1.50] G R Nowling, S E Babayan, V Jankovic and R F Hicks, “Remote plasma-enhanced chemical vapor deposition of silicon nitride at atmospheric pressure,” Plasma Sources Science and Technology, vol. 11, no. 1, pp. 97-103, 2002. [1.51] Chun Huang, Chi‐Hung Liu, Shin‐Yi Wu, “Surface characterization of the SiO x films prepared by a remote atmospheric pressure plasma jet,” Surface and Interface Analysis, vol. 41, no. 1, pp. 44-48, 2008. [1.52] Y.-S. Lee, W.-J. Chen, J.-S. Huang, and S.-C. Wu, “Effects of composition on optical and electrical properties of amorphous In–Ga–Zn–O films deposited using radio-frequency sputtering with varying O2 gas flows,” Thin Solid Films, vol. 520, no. 23, pp. 6942-6946, 2012.
Chapter 2
[2.1] L. Jae Sang, C. Seongpil, K. Sang-Mo, and L. Sang Yeol, “High-Performance a-IGZO TFT With ZrO2 Gate Dielectric Fabricated at Room Temperature,” Electron Device Letters, IEEE, vol. 31, no. 3, pp. 225-227, 2010. [2.2] A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, “Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors,” Applied Physics Letters, vol. 90, no. 12, pp. 123512-123512-3, 2007. [2.3] Y. Ya-Hui, S. S. Yang, K. Chen-Yen, and C. Kan-San, “Chemical and Electrical Properties of Low-Temperature Solution-Processed In-Ga-Zn-O Thin-Film Transistors,” Electron Device Letters, IEEE, vol. 31, no. 4, pp. 329-331, 2010. [2.4] K. Yong-Hoon, H. Min-Koo, H. Jeong-In, and P. Sung Kyu, “Effect of Metallic Composition on Electrical Properties of Solution-Processed Indium-Gallium- Zinc-Oxide Thin-Film Transistors,” IEEE Transactions on Electron Devices, vol. 57, no. 5, pp. 1009-1014, 2010. [2.5] Mi Sun Park, Doo Hyoung Lee, Eun Jin Bae, Dae-Hwan Kim , Jin Gyu Kang and Dae-Ho Son, “Fabrication of Indium Gallium Zinc Oxide (IGZO) TFTs Using a Solution-Based Process,” Molecular Crystals and Liquid Crystals, vol. 529, no. 1, pp. 137-146, 2010. [2.6] M. Furuta., Toshiyuki Kawaharamura, Dapeng Wang, Tatsuya Toda, and Takashi Hirao, “Electrical properites of the Thin-Film Transistors with an Indium Gallium Zimc Oxide Channel and Aluminium Oxide Gate Dielectric Stack Formed by Solution-based Atmospheric Pressure Deposition,” Electron Device Letters, IEEE, vol. 33, no. 6, pp. 851-853, 2012. [2.7] L. Mounir and A. Tamer, “Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review,” Plasma Processes and Polymers, vol. 4, no. 9, pp. 777-778, 2007. [2.8] A. Schutze, J. Y. Jeong, S. E. Babayan, P. Jaeyoung, G. S. Selwyn, and R. F. Hicks, “The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,” Plasma Science, IEEE Transactions on, vol. 26, no. 6, pp. 1685-1694, 1998. [2.9] M. H. Han, J. H. Noh, T. I. Lee, J. H. Choi, K. W. Park, H. S. Hwang, K. M. Song, and H. K. Baik, “High-Rate SiO2 Deposition by Oxygen Cold Arc Plasma Jet at Atmospheric Pressure,” Plasma Processes and Polymers, vol. 5, no. 9, pp. 861-866, 2008. [2.10] L. Linfeng and P. Junbiao, “High-Performance Indium-Gallium-Zinc Oxide Thin-Film Transistors Based on Anodic Aluminum Oxide,” Electron Devices, IEEE Transactions on, vol. 58, no. 5, pp. 1452-1455, 2011. [2.11] C. H. Wu, K. M. Chang, Sung-Hung Huang, I-Chung Deng, Chin-Jyi Wu, Wei-Han Chiang, and Chia-Chiang Chang, “Characteristics of IGZO TFT Prepared by Atmospheric Pressure Plasma Jet Using PE-ALD Al2O3 Gate Dielectric,” Electron Device Letters, IEEE, vol. 33, no. 4, pp. 552-554, 2012. [2.12] C.-J. Ku, Z. Duan, P. I. Reyes, Y. Lu, Y. Xu, C.-L. Hsueh, and E. Garfunkel, “Effects of Mg on the electrical characteristics and thermal stability of MgxZn1−xO thin film transistors,” Appl. Phys. Lett., vol. 98, no. 12 p. 123511, 2011. [2.13] K. Remashan, Y. S. Choi, S. J. Park, and J. H. Janga, J. Electrochem., “High Performance MOCVD-Grown ZnO Thin-Film Transistor with a Thin MgZnO Layer at Channel/Gate Insulator Interface,” Journal of The Electrochemical Society, vol. 157, no. 12, pp. H1121-H1126, 2010. [2.14] J.-S. Park, J. K. Jeong,Y.-G. Mo, H. D. Kim, and C.-J. Kim, “Control of threshold voltage in ZnO-based oxide thin film transistors,” Appl. Phys. Lett., vol. 93, no. 3 p. 033513, 2008.
Chapter 4
[4.1] S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wu, “Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors,” Solid-State Electron, vol. 54, no. 12, pp. 1497–1499, 2010. [4.2] Ji Hoon Park, Yeong-gyu Kim, Seokhyun Yoon, Seonghwan Hong, and Hyun Jae Kim, “Simple Method to Enhance Positive Bias Stress Stability of InGaZnO Thin-Film Transistors Using a Vertically Graded Oxygen-Vacancy Active Layer,” ACS Appl. Mater. Interfaces, vol. 6, no. 23, pp. 21363−21368, 2014. [4.3] Tsao, Yu-Wei, “Performance Comparisons between Furnace and Rapid Thermal Annealing for GaZnO Source/Drain Electrodes of AP-PECVD Fabricated Amorphous InGaZnO Thin Film Transistors,” National Chiao Tung University, 2018. [4.4] Bo-Yuan Su, Sheng-Yuan Chu,Yung-Der Juang, Ssu-Yin Liu, “Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors,” Journal of Alloys and Compounds, vol. 580, no. 15, pp. 10–14, 2013. [4.5] Hung-Chi Wu, Tung-Sheng Liu, and Chao-Hsin Chien, “Effect of Mg Doping on the Electrical Characteristics of High Performance IGZO Thin Film Transistors,” ECS Journal of Solid State Science and Technology, vol. 3, no. 22, pp. Q24-Q27, 2014.
|