跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.53) 您好!臺灣時間:2025/11/30 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭睿麟
研究生(外文):Kuo, Jui-Lin
論文名稱:大氣電漿輔助化學氣相沉積製備摻鎂之氧化銦鎵鋅及氧化銦鎵鋅通道結構改善薄膜電晶體介面
論文名稱(外文):Interface Improvement Thin-Film Transistors with Amorphous Mg-InGaZnO/InGaZnO AP-PECVD Fabricated Channel Structure
指導教授:張國明
指導教授(外文):Chang, Kow-Ming
口試委員:張國明吳建宏鄧一中
口試委員(外文):Chang, Kow-MingWu, Chien-HungDeng, I-Chung
口試日期:2019-06-26
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:88
中文關鍵詞:鎂摻雜雙通道結構介面缺陷大氣電漿輔助化學氣相沉積快速熱退火薄膜電晶體
外文關鍵詞:Mg dopingDouble channel structureInterface defectsAP-PECVDRapid thermal annealingTFT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
現今主動矩陣有機發光二極體 (AMOLED) 顯示器應用朝著大尺寸、低耗電、可繞式、高偵速及高解析度的趨勢發展。非晶態氧化物薄膜電晶體 (AOS) 有良好的電子遷移率、製程均勻度、低的製程溫度及高透光率滿足下一代顯示器規格,在眾多的非晶態氧化物薄膜電晶體中,IGZO TFT 又最具有競爭力,有較佳的電子遷移率 (>10cm2/V-s)、小的次臨界擺幅、大的開關比 (>106)及良好的可靠度。
本篇論文中,通道層皆是以大氣常壓電漿輔助化學氣相沉積 (AP-PECVD)製備,由於製程處在非真空系統下,成本可以大幅降低且有利於大面積製造。而我們的通道做成雙通道結構,30nm的IGZO及10nm摻Mg的IGZO (Mg-IGZO),Mg的原子百分比為Zn的5%。透過後續的XPS及AFM分析,此結構因Mg的加入使氧空缺降低及金氧鍵增強且通道與介電層的缺陷大幅下降,促使有效地提升元件表現,如電子遷移率、次臨界擺幅及開關比。透過電性分析的比較,發現在退火處理階段,使用快速熱退火 (RTA) 的效果較使用爐管的特性優異且快速熱退火是一種低熱預算的退火,符合可繞式產品的應用。除此之外,藉著RTA較快的製程時間及節省消耗搭配大氣常壓電漿輔助化學氣相沉積系統有助於提升產能。
本實驗成功使用大氣常壓電漿輔助化學氣相沉積氧化銦鎵鋅及氧化銦鎵鋅雙通道結構,經由通氧的快速熱退火500度30秒處理的通道層表現有顯著地提升,具有最大的電子遷移率16.66cm2/V·s、最小的次臨界擺幅83.91mV/dec、高的開關電流比 6.47x107且維持小的關閉電流約10-12安培。
Nowadays, Active-matrix organic light-emitting diode (AMOLED) display applications are toward large size, low power consumption, flexible substrate, high speed and high resolution. Amorphous oxide thin film transistor (AOS) has good electron mobility, process uniformity, low process temperature and high optical transmittance to meet the specifications of next-generation displays. Among many amorphous oxide thin film transistors, IGZO TFT is also competitive with better electron mobility (>10cm2/V-s), small subthreshold swing, large switching ratio (>106) and good reliability.
In this paper, the channel layers are all prepared by atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). Because the process is in a non-vacuum system, the cost can greatly decrease, and it is beneficial to large-area manufacturing. Our active layer is double channel structure, 30nm IGZO and 10nm Mg-doped IGZO (Mg-IGZO). The atomic percentage of Mg is 5% of Zn. With subsequent XPS and AFM analysis, this structure can reduce the oxygen vacancy and enhance the metal-oxide bonds strength and the defects between channel with dielectric layer are greatly reduced due to the addition of Mg, which effectively improve the device performance, such as electron mobility, subthreshold swing and switch ratio. Through the comparison of electrical analysis, it was found that using rapid thermal annealing (RTA) is superior to the using furnace annealing in the annealing process and the rapid thermal annealing is a low thermal budget annealing, which is suitable for the application of flexible application. In addition, the faster process time and cost savings of the RTA combined with atmospheric pressure plasma enhanced chemical vapor deposition system can help increase production.
In this experiment, the AP-PECVD fabricated amorphous Mg-InGaZnO/InGaZnO channel structure thin-film transistors was successfully fabricated, and the channel layer treated by rapid thermal annealing at 500°C for 30 seconds in O2 ambient was significantly improved. The electron mobility is 16.66 cm2/V·s, the low sub-threshold swing is 83.91 mV/dec, the high switching current ratio is 6.47×107 and the small off current is maintained at about 10-12pA level.
摘要 I
Abstract III
致謝 V
Contents VI
Table Cations VIII
Figure Captions IX
Chapter1 Introduction 1
1.1 Introduction of thin film transistors (TFTs) 1
1.2 Amorphous oxide semiconductor (AOS) 2
1.3 High-k gate dielectric material 3
1.3.1 High-k gate dielectric material background 4
1.3.2 High-k gate dielectric material advantages 6
1.3.3 High-k gate dielectric material options 7
1.4 Atmospheric pressure plasma enhanced chemical vapor deposition 10
1.5 Thermal annealing - furnace annealing and rapid thermal annealing 11
1.6 Motivation 11
1.6.1 Reason for adopting Mg-IGZO/IGZO channel structure 11
1.6.2 Reason for adopting rapid thermal annealing (RTA) 13
Chapter 2 Literature Reviews 23
2.1 The different techniques to deposit IGZO channel 23
2.1.1 Solution-based atmospheric pressure deposition 23
2.1.2 Atmospheric pressure plasma jet (APPJ) 24
2.2 The Mg-IGZO/IGZO channel structure TFT 25
Chapter 3 Experiment details 32
3.1 The HfO2 capacitor fabricated process 32
3.2 The Mg-IGZO/IGZO channel structure TFT fabricated process 32
Chapter 4 Results and discussions 39
4.1 The Mg-IGZO/IGZO channel structure thin-film transistors by rapid thermal annealing 39
4.1.1 The Hall measurement of Mg-IGZO and IGZO thin films 39
4.1.2 The atomic force microscope (AFM) analysis of Mg-IGZO and IGZO thin films 41
4.1.3 The X-ray diffraction (XRD) analysis of Mg-IGZO and IGZO thin films 42
4.1.4 The X-ray photoelectron spectroscopy (XPS) analysis of Mg-IGZO thin films 43
4.1.5 The electrical characteristics of Mg-IGZO/IGZO channel structure TFT 44
4.2 The Mg-IGZO/IGZO channel structure thin-film transistors by 46
furnace annealing 46
4.2.1 The Hall measurement of Mg-IGZO and IGZO thin films 46
4.2.2 The atomic force microscope (AFM) analysis of IGZO thin films 47
4.2.3 The X-ray photoelectron spectroscopy (XPS) analysis of Mg-IGZO and IGZO thin films 48
4.2.4 The electrical characteristics of Mg-IGZO/IGZO channel structure TFT 49
4.3 Comparison 50
Chapter 5 Conclusions and Future Work 78
5.1 Conclusions 78
5.2 Future Work 79
References 82
Chapter 1

[1.1] E. Fortunato, P. Barquinha, R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater., vol. 24, no. 22, pp. 2945-2986, Jun. 2012.
[1.2] Toshio Kamiya, Kenji Nomura, and Hideo Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, p. 044305, 2010.
[1.3] M. Shur, M. Hack, and G Shaw, “A New analytic model for amorphous silicon thin film transistors,” J. Appl. Phys., vol. 66, no. 7, pp. 3371-3380, 1989.
[1.4] Kenji Nomura, Akihiro Takagi, Toshio Kamiya, Hiromichi Ohta, Masahiro Hirano, and Hideo Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,” Jpn. J. Appl.Phys., vol. 45, no. 5B, pp. 4303-4308, 2006.
[1.5] Hisato Yabuta, Masafumi Sano, Katsumi Abe, Toshiaki Aiba, Tohru Den, and Hideya Kumomi, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. vol. 89, no. 11, p. 112123, 2006.
[1.6] X. Yu, J.Ma, F. Ji, Y. Wang, X.Zhang, C.Cheng, and H. Ma, “Preparation and properties of ZnO:Ga films prepared by r.f. magnetron sputtering at low temperature,” Applied Surface Science, vol. 239, no. 2, pp. 222-226, 2005.
[1.7] Satoshi Masuda, Ken Kitamura, Yoshihiro Okumura, and Shigehiro Miyatake, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” Journal of Applied Physics, vol. 93, no. 3, p. 1624, 2003.
[1.8] Seok-Jun Seo, Chaun Gi Choi, Young Hwan Hwang and Byeong-Soo Bae, “High performance solution-processed amorphous zinc tin oxide thin film transistor,” Journal of Physics D: Applied Physics, vol. 42, no. 3, p. 035016, 2008.
[1.9] E.Tokumitsu, E.Tokumitsu and T.Miyasako “Use of ferroelectric gate insulator for thin film transistors with ITO channel,” Microelectronic Engineering, vol. 80, pp .305-308, 2005.
[1.10] Pradipta K. Nayak, M. N. Hedhili, Dongkyu Cha and H. N. Alshareef, “High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric,” Appl. Phys. Lett., vol. 103, no. 3, p. 033518, 2013.
[1.11] Zhang, XinAn; Zhai, JunXia; Yu, XianKun; Zhu, RuiJuan; Zhang, WeiFeng, “Effect of Annealing Temperature on the Performance of SnO2 Thin Film Transistors Prepared by Spray Pyrolysis,” Journal of Nanoscience and Nanotechnology, vol. 15, no. 8, pp. 6183-6187, 2015.
[1.12] Gwang Jun Lee, Joonwoo Kim, Jung-Hye Kim, Soon Moon Jeong, Jae Eun Jang and Jaewook Jeong, “ High performance, transparent a-IGZO TFTs on a flexible thin glass substrate,” Semiconductor Science and Technology, vol. 29, no. 3, p.035003, 2014.
[1.13] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,”Nature (London) 432, pp. 488-492, 2004.
[1.14] H. Hosono, M. Yasukawa and H. Kawazoe “Novel oxide amorphous semiconductors: transparent conducting amorphous oxides,”Journal of Non- Crystalline Solids, vol. 203, pp. 334-344, 1996.
[1.15] H. Hideo, “Ionic Amorphous Oxide Semiconductors: Material Design, Carrier Transport, and Device Application,” Journal of Non-Crystalline Solids, vol. 352, no. 9-20, pp. 851-858, 2006.
[1.16] E. S. Sundholm, “Amorphous Oxide Semiconductor Thin-film Transistor Ring Oscillators and Material Assessment,” Oregon State University, 2010.
[1.17] Jin-Seong Park, H. Kim, and Il-Doo Kim,“Overview of electroceramic materials for oxide semiconductor thin film transistors,” Journal of Electroceramics, vol. 32, no. 2-3, pp. 117-140, 2014.
[1.18] Wantae Lim, Yu-Lin Wang, Fan Ren, D. P. Norton,“Room-Temperature-Deposited Indium-Zinc Oxide Thin Films with Controlled Conductivity”, Electrochem Solid-State Lett., vol. 10, no. 9, pp. 267-269, 2007.
[1.19] G. D. Wilk, “High-κ Gate Dielectrics: Current Status and Materials Properties Considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243-5273, 2001
[1.20] Yee-Chia Yeo, Tsu-Jae King and Chenming Hu,“MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations,” IEEE Transactions on Electron Devices, vol. 50, no. 4, pp. 1027-1035, 2003.
[1.21] J. Robertson, “High Dielectric Constant Oxides,” Eur. Phys. J. Appl. Phys., vol. 28, no. 3, pp. 265-291, 2004.
[1.22] G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-κ Gate Dielectrics: Current Status and Materials Properties Considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243-5273, 2001.
[1.23] J. Robertson, “High Dielectric Constant Oxides,” The European Physical Journal Applied Physics Letters, vol. 28, no. 3, pp. 265-291, 2004.
[1.24] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M Stork, M. Zeitzoff, and J. C. Woo, “The Impact of High-κ Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFETs,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
[1.25] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal Stability and Structural Characteristics of HfO2 Films on Si (100) Grown by Atomic-layer Deposition,” Applied Physics Letters, vol. 81, no. 472, pp. 472-474, 2002.
[1.26] V. Mikhelashvili, and G. Eisenstein, “Effects of Annealing Conditions on Optical and Electrical Characteristics of Titanium Dioxide Films Deposited by Electron Beam Evaporation,” Applied Physics Letters, vol. 89, no. 6, pp. 3256-3269, 2001.
[1.27] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal Stability and Structural Characteristics of HfO2 Films on Si (100) Grown by Atomic-layer Deposition,” Applied Physics Letters, vol. 81, no. 472, pp. 472-474, 2002.
[1.28] In-Tak Cho, Woo-Seok Cheong, Chi-Sun Hwang, Jeong-Min Lee, Hyuck-In Kwon and Jong-Ho Lee, “Comparative Study of the Low-Frequency-Noise Behaviors in a-IGZO Thin-Film Transistors with Al2O3 and Al2O3/SiNx Gate Dielectrics,” IEEE Electron Device Letters, vol. 30, no. 8, pp. 828-830, 2009.
[1.29] Rongsheng Chen, Wei Zhou, Meng Zhang and Hoi Sing Kwok, “High performance self-aligned top-gate ZnO thin film transistors using sputtered Al2O3 gate dielectric,” Thin Solid Films, vol. 520, no. 21, pp. 6681-6683, 2012.
[1.30] Rongsheng Chen, Wei Zhou, Meng Zhang and Hoi Sing Kwok, “Self-aligned top-gate InGaZnO thin film transistors using SiO2/Al2O3 stack gate dielectric,” Thin Solid Films, vol. 548, no. 2, pp. 572-575, 2013.
[1.31] W. S. Shiha, S. J. Youngb,z, L. W. Jia,z, W. Waterb and H. W. Shiua, “TiO2-Based Thin Film Transistors with Amorphous and Anatase Channel Layer,” The Electrochemical Society, vol. 158, no. 6, pp. 609-611, 2011.
[1.32] Ming-Kwei Lee, Hung-Chang Lee and Chih-Min Hsu, “High dielectric constant TiO2 film grown on polysilicon by liquid phase deposition,” Materials Science in Semiconductor Processing, vol. 10, no. 2-3, pp. 61-67, 2007.
[1.33] W.S.Shih, S.J.Young, L.W.Ji, W.Water, T.H.Meen, K.T.Lam, J.Sheen and W.C.Chu, “Thin film transistors based on TiO2 fabricated by using radio-frequency magnetron sputtering,” Journal of Physics and Chemistry of Solids, vol. 71, no. 12, pp. 1760-1762, 2010.
[1.34] Young-Je Cho, Ji-Hoon Shin, S.M.Bobade, Young-Bae Kim and Duck-Kyun Choi, “Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors,” Thin Solid Films, vol. 517, no. 14, pp. 4115-4118, 2009.
[1.35] Santosh M.Bobade, Ji-Hoon Shin, Young-Je Cho, Jung-Sun You and Duck-Kyun Choi, “Room temperature fabrication Oxide TFT with Y2O3 as a gate oxide and Mo contact,” Applied Surface Science, vol. 255, no. 17, pp. 7831-7833, 2009.
[1.36] Carmen Bartic, Henri Jansen, Andrew Campitelli and Staf Borghs, “Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors,” Organic Electronics, vol. 3, no. 2, pp. 65-72, 2002.
[1.37] T.Kallfass and E.Lueder, “High voltage thin film transistors manufactured with photolithography and with Ta2O5 as the gate oxide,” Thin Solid Films, vol. 61, no. 2, pp. 259-264, 1979.
[1.38] Jae Sang Lee, Seongpil Chang, Sang-Mo Koo and Sang Yeol Lee, “High- Performance a-IGZO TFT With ZrO2 Gate Dielectric Fabricated at Room Temperature,” IEEE Electron Device Letters, vol. 31, no. 3, pp. 225-227, 2010.
[1.39] Si Joon Kim, Doo Hyun Yoon, You Seung Rim and Hyun Jae Ki, “Low-Temperature Solution-Processed ZrO2 Gate Insulators for Thin-Film Transistors Using High-Pressure Annealing,” Electrochem. Solid-State Lett., vol. 14, no. 11, pp. 35-37, 2011.
[1.40] Sun Jin Yun, Jae Bon Koo, Jung Wook Lim and Seong Hyun Kim, “Pentacene- Thin Film Transistors with ZrO2 Gate Dielectric Layers Deposited by Plasma-Enhanced Atomic Layer Deposition,” Electrochem. Solid-State Lett., vol. 10, no. 3, pp. 90-93, 2007
[1.41] Longyan Yuan, Xiao Zou, Guojia Fang, Jiawei Wan, Hai Zhou, and Xingzhong Zhao, “High-Performance Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors With HfOxNy/HfO2/HfOxNy Tristack Gate Dielectrics,” IEEE Electron Device Letters, vol. 32, no. 1, pp. 42-44, 2011.
[1.42] Xiao Zou, Guojia Fang, Longyan Yuan, Xingsheng Tong and Xingzhong Zhao, “A comparative study of amorphous InGaZnO thin-film transistors with HfOxNy and HfO2 gate dielectrics,” Semicond. Sci. Technol, vol. 25, no. 5, p. 055006, 2010.
[1.43] Young Mo Kim, Chulkwon Park, Useong Kim, Chanjong Ju and Kookrin Char, “High-mobility BaSnO3 thin-film transistor with HfO2 gate insulator,” Applied Physics Express, vol. 9, no. 1, p. 011201, 2015.
[1.44] L. X. Qian, P. T. Lai, and W. M. Tang, “Effects of Ta incorporation in La2O3 gate dielectric of InGaZnO thin-film transistor,” Appl. Phys. Lett., vol. 104, no. 12, p. 123505, 2014.
[1.45] X. D. Huang, J. Q. Song and P. T. Lai, “Effects of Thermal Annealing on La2O3 Gate Dielectric of InGaZnO Thin-Film Transistor,” ECS Solid State Lett., vol. 4, no. 9, pp. 44-46, 2015.
[1.46] Woong-Sun Kim, Yeon-Keon Moon, Kyung-Taek Kim,Sae-Young Shin and Jong-Wan Park, “Improvement in the bias stability of zinc oxide thin-film transistors using Si3N4 insulator with SiO2 interlayer,” Thin Solid Films, vol. 520, no. 1, pp. 578-581, 2011.
[1.47] Ji Sim Jung, Sang-Ho Rha, Un Ki Kim, Yoon Jang Chung, Yoon Soo Jung, Jung-Hae Choi and Cheol Seong Hwang, “The charge trapping characteristics of Si3N4 and Al2O3 layers on amorphous-indium-gallium-zinc oxide thin films for memory application,” Appl. Phys. Lett., vol. 100, no. 18, p. 183503, 2012.
[1.48] Kow-Ming Chang, Po-Ching Ho, Atthaporn Ariyarit, Kuo-Hui Yang, Jui-Mei Hsu, Chin-Jyi Wu, and Chia-Chiang Chang, “Enhancement of the light-scattering ability of Ga-doped ZnO thin filmsusing SiOx nano-films prepared by atmospheric pressure plasma deposition system,” Thin Solid Films, vol. 548, no. 2, pp. 460-464, 2013
[1.49] X Yang, M Moravej, S E Babayan, G R Nowling and R F Hicks, “High stability of atmospheric pressure plasmas containing carbon tetrafluoride and sulfur hexafluoride,” Plasma Sources Science and Technology, vol. 14, no. 3, p. 412, 2005.
[1.50] G R Nowling, S E Babayan, V Jankovic and R F Hicks, “Remote plasma-enhanced chemical vapor deposition of silicon nitride at atmospheric pressure,” Plasma Sources Science and Technology, vol. 11, no. 1, pp. 97-103, 2002.
[1.51] Chun Huang, Chi‐Hung Liu, Shin‐Yi Wu, “Surface characterization of the SiO x films prepared by a remote atmospheric pressure plasma jet,” Surface and Interface Analysis, vol. 41, no. 1, pp. 44-48, 2008.
[1.52] Y.-S. Lee, W.-J. Chen, J.-S. Huang, and S.-C. Wu, “Effects of composition on optical and electrical properties of amorphous In–Ga–Zn–O films deposited using radio-frequency sputtering with varying O2 gas flows,” Thin Solid Films, vol. 520, no. 23, pp. 6942-6946, 2012.

Chapter 2

[2.1] L. Jae Sang, C. Seongpil, K. Sang-Mo, and L. Sang Yeol, “High-Performance a-IGZO TFT With ZrO2 Gate Dielectric Fabricated at Room Temperature,” Electron Device Letters, IEEE, vol. 31, no. 3, pp. 225-227, 2010.
[2.2] A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, “Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors,” Applied Physics Letters, vol. 90, no. 12, pp. 123512-123512-3, 2007.
[2.3] Y. Ya-Hui, S. S. Yang, K. Chen-Yen, and C. Kan-San, “Chemical and Electrical Properties of Low-Temperature Solution-Processed In-Ga-Zn-O Thin-Film Transistors,” Electron Device Letters, IEEE, vol. 31, no. 4, pp. 329-331, 2010.
[2.4] K. Yong-Hoon, H. Min-Koo, H. Jeong-In, and P. Sung Kyu, “Effect of Metallic Composition on Electrical Properties of Solution-Processed Indium-Gallium- Zinc-Oxide Thin-Film Transistors,” IEEE Transactions on Electron Devices, vol. 57, no. 5, pp. 1009-1014, 2010.
[2.5] Mi Sun Park, Doo Hyoung Lee, Eun Jin Bae, Dae-Hwan Kim , Jin Gyu Kang and Dae-Ho Son, “Fabrication of Indium Gallium Zinc Oxide (IGZO) TFTs Using a Solution-Based Process,” Molecular Crystals and Liquid Crystals, vol. 529, no. 1, pp. 137-146, 2010.
[2.6] M. Furuta., Toshiyuki Kawaharamura, Dapeng Wang, Tatsuya Toda, and Takashi Hirao, “Electrical properites of the Thin-Film Transistors with an Indium Gallium Zimc Oxide Channel and Aluminium Oxide Gate Dielectric Stack Formed by Solution-based Atmospheric Pressure Deposition,” Electron Device Letters, IEEE, vol. 33, no. 6, pp. 851-853, 2012.
[2.7] L. Mounir and A. Tamer, “Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review,” Plasma Processes and Polymers, vol. 4, no. 9, pp. 777-778, 2007.
[2.8] A. Schutze, J. Y. Jeong, S. E. Babayan, P. Jaeyoung, G. S. Selwyn, and R. F. Hicks, “The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,” Plasma Science, IEEE Transactions on, vol. 26, no. 6, pp. 1685-1694, 1998.
[2.9] M. H. Han, J. H. Noh, T. I. Lee, J. H. Choi, K. W. Park, H. S. Hwang, K. M. Song, and H. K. Baik, “High-Rate SiO2 Deposition by Oxygen Cold Arc Plasma Jet at Atmospheric Pressure,” Plasma Processes and Polymers, vol. 5, no. 9, pp. 861-866, 2008.
[2.10] L. Linfeng and P. Junbiao, “High-Performance Indium-Gallium-Zinc Oxide Thin-Film Transistors Based on Anodic Aluminum Oxide,” Electron Devices, IEEE Transactions on, vol. 58, no. 5, pp. 1452-1455, 2011.
[2.11] C. H. Wu, K. M. Chang, Sung-Hung Huang, I-Chung Deng, Chin-Jyi Wu, Wei-Han Chiang, and Chia-Chiang Chang, “Characteristics of IGZO TFT Prepared by Atmospheric Pressure Plasma Jet Using PE-ALD Al2O3 Gate Dielectric,” Electron Device Letters, IEEE, vol. 33, no. 4, pp. 552-554, 2012.
[2.12] C.-J. Ku, Z. Duan, P. I. Reyes, Y. Lu, Y. Xu, C.-L. Hsueh, and E. Garfunkel, “Effects of Mg on the electrical characteristics and thermal stability of MgxZn1−xO thin film transistors,” Appl. Phys. Lett., vol. 98, no. 12 p. 123511, 2011.
[2.13] K. Remashan, Y. S. Choi, S. J. Park, and J. H. Janga, J. Electrochem., “High Performance MOCVD-Grown ZnO Thin-Film Transistor with a Thin MgZnO Layer at Channel/Gate Insulator Interface,” Journal of The Electrochemical Society, vol. 157, no. 12, pp. H1121-H1126, 2010.
[2.14] J.-S. Park, J. K. Jeong,Y.-G. Mo, H. D. Kim, and C.-J. Kim, “Control of threshold voltage in ZnO-based oxide thin film transistors,” Appl. Phys. Lett., vol. 93, no. 3 p. 033513, 2008.

Chapter 4

[4.1] S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wu, “Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors,” Solid-State Electron, vol. 54, no. 12, pp. 1497–1499, 2010.
[4.2] Ji Hoon Park, Yeong-gyu Kim, Seokhyun Yoon, Seonghwan Hong, and Hyun Jae Kim, “Simple Method to Enhance Positive Bias Stress Stability of InGaZnO Thin-Film Transistors Using a Vertically Graded Oxygen-Vacancy Active Layer,” ACS Appl. Mater. Interfaces, vol. 6, no. 23, pp. 21363−21368, 2014.
[4.3] Tsao, Yu-Wei, “Performance Comparisons between Furnace and Rapid Thermal Annealing for GaZnO Source/Drain Electrodes of AP-PECVD Fabricated Amorphous InGaZnO Thin Film Transistors,” National Chiao Tung University, 2018.
[4.4] Bo-Yuan Su, Sheng-Yuan Chu,Yung-Der Juang, Ssu-Yin Liu, “Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors,” Journal of Alloys and Compounds, vol. 580, no. 15, pp. 10–14, 2013.
[4.5] Hung-Chi Wu, Tung-Sheng Liu, and Chao-Hsin Chien, “Effect of Mg Doping on the Electrical Characteristics of High Performance IGZO Thin Film Transistors,” ECS Journal of Solid State Science and Technology, vol. 3, no. 22, pp. Q24-Q27, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊