跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.34) 您好!臺灣時間:2025/10/31 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝志威
研究生(外文):Chih-Wuei Hsieh
論文名稱:新型電光調變式積體光學表面電漿共振生化感測器
論文名稱(外文):Novel Integrated-Optic Surface-Plasmon-Resonance Biosensor by Electro-Optical Modulation
指導教授:王子建
口試委員:陳灝平黃榮山王維新
口試日期:2006-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:96
中文關鍵詞:表面電漿共振生化感測器鈮酸鋰奈米粒子自組裝薄膜積體光學共光程外差干涉
外文關鍵詞:surface plasmon resonancebiosensorlithium niobatenanoparticleself-assembled monolayerintegrated opticscommon-path heterodyne interferometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出應用電光調變進行相位檢測之積體光學表面電漿共振感測器,可用於檢測液體之折射率以及生化物質之濃度。所提出的電光調變式表面電漿共振感測器是製作在鈮酸鋰晶片上,其元件結構是由鈦擴散光波導、一對電極與感測區所構成。感測區中所使用的表面電漿激發層有兩種,分別由金膜以及金膜上鍵結奈米金粒所構成。感測區中的生化感測層是利用自組裝薄膜技術,將人血清球蛋白鍵結固定於表面電漿激發層上,可即時檢測出治療冠狀心臟疾病之藥物-乙型阻斷劑的濃度,以及其與人血清球蛋白之交互作用的強度,以了解藥物在人體內作用的機制。在元件操作上,是利用鈮酸鋰的電光效應調變表面電漿共振所伴隨的相位變化,使待測物的特性可藉由相位隨外加電壓變化的情形而被檢測出來。元件中利用奈米粒子的表面積效應,以增加人血清球蛋白在奈米金粒表面的覆蓋面積,進而提高感測器的靈敏度,相較於傳統的強度檢測方式,所提出的生化感測器具有:準確性高、敏感度高、操作容易等優點,未來可望與其他多樣化之功能性元件整合在單一晶片上,構成生化檢測之光積體電路,達到大量平行檢測的目的。
In this study, we present a novel integrated-optic surface-plasmon-resonance (SPR) biosensor by electro-optically modulation, which can be used to measure the refractive index of sensing liquid and the concentration of biochemical material. Its device structure consists of a titanium-diffused waveguide, one pair of electrode, and a sensing region. Two kinds of excited layer of surface plasmon, gold film and gold nanoparticle on gold film, are adopted in the sensor, respectively. In order to specifically sense the concentration of biochemical material, human-serum-albumin (HSA) bonded on the excited layer of surface plasmon by the self-assembling method is used as the biolayer and can be used to real-time sense the concentration of beta-blocker, which is a kind of medicine for heart disease. During the sensor measurement, the SPR phase can be tuned by electro-optic effect in lithium niobate and the property of the sensing material can be detected by the relation between the phase and the voltage. Because of the surface effect of nano particles, gold nano particles are used on the biosensor to increase the surface coverage of human-serum-albumin. In comparison with the conventional SPR sensor, the proposed SPR sensor has many advantages, such as: high accuracy, high sensitivity, and easy operation. The integration of the proposed integrated-optic SPR biosensor with other functional devices in one single lithium niobate chip will facilitate the processing of optical sensing signal to further reduce the system volume and to achieve high-throughput screening.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 鈮酸鋰之材料特性 3
1.3 研究動機與目的 9
1.4 內容概述 10
第二章 表面電漿共振理論及外差干涉儀原理 11
2.1 表面電漿共振簡介 11
2.2 表面電漿波之激發原理 13
2.3 光學激發表面電漿共振 18
2.4 表面電漿共振的量測方式 22
2.5 外差干涉術簡介 22
2.5.1 外差光源 23
2.5.2 反射光之相位差 24
2.6 生化檢測原理 25
第三章 鈮酸鋰光波導製程 26
3.1 金屬擴散式鈮酸鋰光波導之特性 26
3.2 質子交換式鈮酸鋰光波導之特性 27
3.3 金屬擴散鈮酸鋰的數學模型 27
3.4 金屬擴散式鈮酸鋰光波導之製程步驟 31
3.4.1 晶片切割 31
3.4.2 晶片清潔 33
3.4.3 黃光微影製程 33
3.4.4 金屬薄膜蒸鍍 34
3.4.5 薄膜掀離與蝕刻 35
3.4.6 高溫擴散 36
3.4.7 晶片研磨拋光 37
3.5 質子交換式鈮酸鋰光波導之製程步驟 37
3.6 元件之光學量測 38
第四章 新型電光調變式積體光學表面電漿共振生化感測器 42
4.1 操作原理 42
4.2 電光調變式表面電漿共振生化感測器之元件設計 44
4.3 電光調變式表面電漿共振生化感測器之元件製作 46
4.3.1 奈米金粒之製備 50
4.3.1.1 奈米金粒合成 51
4.3.1.2 固定奈米金粒在金膜表面及選區成長 52
4.3.2 自組裝薄膜技術 54
4.3.3 乙型阻斷劑濃度之調配 57
4.4 光相位差量測裝置 57
第五章 結果與討論 59
5.1 表面電漿共振折射率感測器 59
5.2 使用金膜之表面電漿共振生化感測器 63
5.3 使用奈米金粒之表面電漿共振生化感測器 67
5.3.1 金膜厚度為5nm 67
5.3.2 金膜厚度為10nm 72
5.3.3 金膜厚度為20nm 75
第六章 結論 80
參考文獻 82
中英文名詞對照表 87
附錄:
A 發表於2004年台灣光電科技研討會之論文 91
B 發表於2005年台灣光電科技研討會之論文 94
[1]R. W. Wood, “On a remarkable case uneven distribution of light in a diffraction grating spectrum,” Phil. Magm, vol. 4, pp. 396-402, 1902.
[2]E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys, vol. 241, pp. 313-324, 1971.
[3]A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik, vol. 216, pp. 398-410, 1968.
[4]B. Liedberg, C. Nylander and I. Lundström, “Surface plasmons resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299-304, 1983.
[5]J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B, vol. 54, pp. 3-15, 1999.
[6]J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., vol. 377, pp. 528–539, 2003.
[7]Z. M. Qi, K. Itoh, M. Murabayashi and H. Yanagi, “A Composite Optical Waveguide-Based Polarimetric Interferometer for Chemical and Biological Sensing Applications,” Journal of Lightwave technology, vol.18, no.8, pp.1106-1110, 2000.
[8]B.J. Luff, R.D. Harris and J.S. Wilkinson, “Integrated-optical directional coupler biosensor,” Optics Letters, vol. 21, no.8, pp.618-620, 1996.
[9]H.A. Jamid, “Multilayer ARROW channel waveguide for evanescent field enhancement in low-index media,” Applied Optics, vol.41, no.7, pp.1385-1390, 2002.
[10]F. Prieto, A. Llobera, D. Jiménez and C. Doménguez, “Design and analysis of silicon anti-resonant reflecting optical waveguides for evanescent field sensor,” Journal of Lightwave Technology, vol. 18, no. 7, pp. 966-972, 2000.
[11]J.C. Abanulo, R.D. Harris, P.N. Bartlett, and J.S. Wilkinson, “Waveguide surface plasmon resonance sensor for electrochemically controlled surface reactions,” Applied Optics, vol. 40, pp. 6242-6245, 2001.
[12]Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi and C. R. Lavers, “A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands,” Sensors and Actuators B, vol. 81, pp.254-258, 2002.
[13]B.J. Luff, J.S. Wilkinson, J. Piehler and U. Hollenbach, “Integrated optical Mach-Zehnder biosensor,” Journal of Lightwave technology, vol.16, no. 4, pp.583-592, 1998.
[14]D. Hah, E. Yoon and S. Hong, “An opto-mechanical pressure sensor using multimode interference couplers with polymer waveguides on a thin p+-Si membrane,” Sensors and Actuators A, vol. 79, pp. 204-210, 2000.
[15]B. Chadwick, and M. Gal, “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys., vol. 32, pp. 2716–2717, 1993.
[16]J. Melendez, R. Carr, D. Barthelomew, H. Taneja, S. Yee, C. Jung, and C. Furlong, “Development of a surface plasmon resonance sensor for commercial applications,” Sensors and Actuators B, vol. 39, pp. 375–379, 1997.
[17]K.S. Johnston, S.R. Karlson, C. Jung, and S.S. Yee, “New analytical technique for characterization of thin films using surface plasmon resonance,” Mater. Chem. Phys., vol. 42, pp. 242–246, 1995.
[18]S.G. Nelson, K.S. Johnston, and S.S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sensors and Actuators B, vol. 35, pp. 187-191, 1996.
[19]C.M. Wu, Z.C. Jian, and S.F. Joe, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sensors and Actuators B, vol. 92, pp. 133-136, 2003.
[20]A.V. Kabashin and P.I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” J. Opt. Comm., vol. 150, pp. 5-8, 1998.
[21]O. Solgaard, F. Ho, J. L. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Applied Physics Letters, vol. 61, pp. 2500-2502, 1992.
[22]H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sensors and Actuators B, vol. 87, pp.244-249, 2002.
[23]F. Kim, J.H. Song and P. Yang, “Photochemical synthesis of gold nanorods,” Journal of American Chemistry Society, vol. 124, no. 48, pp.14316-14317, 2002.
[24]J. Aizpurua, P. Hanarp and D.S. Sutherland, “Optical properties of gold nanorings,” Physical Review Letters, vol. 90, no. 5, pp.057401-1-057401-4, 2003.
[25]B. Kim, S.L. Tripp and A. Wei, “Turning the optical properties of gold nanoparticle arrays,” Material Research Society, vol. 676, pp.Y6.1.1-Y6.1.7, 2001.
[26]H. Bi, W. Cai and L. Zhang, “Annealing-induced reversible change in optical absorption,” Applied Physics Letters, vol. 81, no. 27, pp.5222-5224, 2002.
[27]H. Bi, W. Cai, C. Kan and L. Zhang, “Optical study of redox process of Ag nanoparticle at high temperature,” Journal of Applied Physics, vol. 92, no. 12, pp.7491-7497, 2002.
[28]I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sensors and Actuators B, vol. 54, 98-105, 1999.
[29]X. Yu, D. Wang, D. Wang, Y. J. H. Ou, Z. Yan, Y. Zibo, Y. Dong, W. Liao, and X. S. Zhao, “Micro-array detection system for gene expression products based on surface plasmon resonance imaging,” Sensors and Actuators B, vol. 91, pp. 133-137, 2003.
[30]P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B, vol. 54, pp. 166-175, 1999.
[31]W. B. Lin, J. M. Chovelon, and N. J. Renault, “Fiber-optic surface-plasmon resonance for the determination of thickness and optical constants of thin metal films,” Applied Physics, vol. 39, pp. 3261-3265, 2000.
[32]H. Raether, Surface plasmon on smooth and rough surfaces and on gratings, Germany, Springer-Verlag, pp. 1-12, 1988.
[33]J. Čryroký, J. Homola, P.V. Lambeck, S. Musa, H.J.W.M. Hoekstra, R.D. Harris, J.S. Wilkinson, B. Usievich, and N.M. Lyndin, “Theory and modeling of optical waveguide sensors utilizing surface plasmon resonance,” Sensors and Actuators B, vol. 54, pp. 66-73, 1999.
[34]J. C. Suits, “Magneto-optical rotation and ellipticity measurements with a spinning analyzer,” Rev. Sci. Instrum, vol. 42, pp. 19-22, 1971.
[35]M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Optics Letters, vol. 9, pp. 319-321, 1984.
[36]W. H. Stevenson, ”Optical frequency shifting by means of a rotating diffraction grating,” Applied Physics, vol. 9, pp. 649-652, 1970.
[37]M. G. Gazalet, M. Raveg, F. Haine, C. Bruneel, and E. Bridoux, ”Acousto-optic low frequency shifter,” Applied Physics, vol. 33, pp. 1293-1298, 1994.
[38]J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long known effect,” J. Opt. Sci. Am, vol. 59, pp. 950-954, 1969.
[39]H. Takasaki, N. Umeda, and M. Tsukiji, “Stabilized transverse Zeeman laser as a new light source for optical measurement,” Applied Optics, vol. 19, pp. 435-441, 1980.
[40]D. C. Su, M. H. Chiu, and C. D. Chen, ”Simple two frequency laser,” Prec. Eng, vol. 18, pp. 161-163, 1996.
[41]Y. C. Cheng, W. K. Su, and J. H. Lion, “Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol” Opt. Eng, vol. 39, pp. 311-314, 2000.
[42]W. Lu and W. M. Worek, “Two-wavelength interferometric technique for measuring the refractive index of salt-water solution,” Applied Optics, vol. 32, pp. 3992-4002, 1993.
[43]A. Ahluwalia, G. Giusto, and D.D. Rossi, “Non-specific adsorption on antibody surfaces for immunosensing” Materials Science and Engineering, vol. C3, pp. 267-271, 1995
[44]M. N. Armenise,’’ Fabrication techniques of lithium niobate waveguide,’’ IEEE Proc., vol. 135, no. 2, pp. 85-91, April 1988.
[45]E. Zolotysbko, Y. Avrahami, W. Sauer, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Applied Physics Letters, vol. 73, no.10, pp. 1352-1354, 1998.
[46]Y.P. Liao, D.J. Chen, R.C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Tech. Lett., vol. 8, pp. 548-550, 1996.
[47]A. Y. Yan, “Index instabilities in proton exchanged LiNbO3 waveguides,” Applied Physics Letters, vol. 42, pp. 633-635, 1983.
[48]S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” Journal of Lightwave technology, vol. LT-5, no.5, pp. 700-708, 1987.
[49]S. Link, Z. L. Wang, and M.A.E. Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B., vol.103, pp. 3529-3533, 1999.
[50]A. Henglein, “Physicochemical properties of small metal particles in solution: "Microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition,” J. Phys. Chem., vol.97, pp. 5457-5471, 1993.
[51]F. Kim, J.H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” Journal of American Chemistry Society., vol. 124, pp. 14316-14317, 2002.
[52]M.T. Reetz, W. Helbig, and S.A. Quaiser, “Electrochemical preparation of nanostructural bimetallic clusters,” Chem. Mater., vol. 7, pp. 2227-2228, 1995.
[53]T. Zhu, X. Fu, T. Mu, J. Wang, and Z. Liu, “PH-Dependent adsorption of gold nanoparticles on p-Aminothiophenol-modified gold substrates,” Langmuir, vol.15, pp. 5197-5199, 1999.
[54]W.H. Scouten, J.H.T. Luong, and R.S. Brown, “Enzyme or protein immobilization techniques for applications in biosensor design,” Trends in Biotechnology, vol. 13, pp. 178-185, 1995.
[55]R.C.J. Horton, T.M Herne, and D.C. Myles, “Aldehyde-terminated self-assembled monolayers on gold: immobilization of amines onto gold surfaces,” Journal of American Chemistry Society, vol. 119, pp. 12980-12981, 1997.
[56]D.L. Allara, “Critical issues in applications of self-assembled monolayers,” Biosensors and Bioelectronics, vol. 10, pp. 771-783, 1995.
[57]S. Ferretti, S. Paynter, D.A. Russell, K.E. Sapsford, and D.J. Richardson, “Self-assembled monolayers: a versatile tool for the formulation of bio-surface,” Trends in analytical chemistry, vol. 19, pp. 530-540, 2000.
[58]A. Ulman, An introduction to ultrathin organic films : from lanmuir-blodgett to self-assembly, Boston, Academic, pp. 237 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top