|
[1]R. W. Wood, “On a remarkable case uneven distribution of light in a diffraction grating spectrum,” Phil. Magm, vol. 4, pp. 396-402, 1902. [2]E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys, vol. 241, pp. 313-324, 1971. [3]A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik, vol. 216, pp. 398-410, 1968. [4]B. Liedberg, C. Nylander and I. Lundström, “Surface plasmons resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299-304, 1983. [5]J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B, vol. 54, pp. 3-15, 1999. [6]J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., vol. 377, pp. 528–539, 2003. [7]Z. M. Qi, K. Itoh, M. Murabayashi and H. Yanagi, “A Composite Optical Waveguide-Based Polarimetric Interferometer for Chemical and Biological Sensing Applications,” Journal of Lightwave technology, vol.18, no.8, pp.1106-1110, 2000. [8]B.J. Luff, R.D. Harris and J.S. Wilkinson, “Integrated-optical directional coupler biosensor,” Optics Letters, vol. 21, no.8, pp.618-620, 1996. [9]H.A. Jamid, “Multilayer ARROW channel waveguide for evanescent field enhancement in low-index media,” Applied Optics, vol.41, no.7, pp.1385-1390, 2002. [10]F. Prieto, A. Llobera, D. Jiménez and C. Doménguez, “Design and analysis of silicon anti-resonant reflecting optical waveguides for evanescent field sensor,” Journal of Lightwave Technology, vol. 18, no. 7, pp. 966-972, 2000. [11]J.C. Abanulo, R.D. Harris, P.N. Bartlett, and J.S. Wilkinson, “Waveguide surface plasmon resonance sensor for electrochemically controlled surface reactions,” Applied Optics, vol. 40, pp. 6242-6245, 2001. [12]Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi and C. R. Lavers, “A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands,” Sensors and Actuators B, vol. 81, pp.254-258, 2002. [13]B.J. Luff, J.S. Wilkinson, J. Piehler and U. Hollenbach, “Integrated optical Mach-Zehnder biosensor,” Journal of Lightwave technology, vol.16, no. 4, pp.583-592, 1998. [14]D. Hah, E. Yoon and S. Hong, “An opto-mechanical pressure sensor using multimode interference couplers with polymer waveguides on a thin p+-Si membrane,” Sensors and Actuators A, vol. 79, pp. 204-210, 2000. [15]B. Chadwick, and M. Gal, “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys., vol. 32, pp. 2716–2717, 1993. [16]J. Melendez, R. Carr, D. Barthelomew, H. Taneja, S. Yee, C. Jung, and C. Furlong, “Development of a surface plasmon resonance sensor for commercial applications,” Sensors and Actuators B, vol. 39, pp. 375–379, 1997. [17]K.S. Johnston, S.R. Karlson, C. Jung, and S.S. Yee, “New analytical technique for characterization of thin films using surface plasmon resonance,” Mater. Chem. Phys., vol. 42, pp. 242–246, 1995. [18]S.G. Nelson, K.S. Johnston, and S.S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sensors and Actuators B, vol. 35, pp. 187-191, 1996. [19]C.M. Wu, Z.C. Jian, and S.F. Joe, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sensors and Actuators B, vol. 92, pp. 133-136, 2003. [20]A.V. Kabashin and P.I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” J. Opt. Comm., vol. 150, pp. 5-8, 1998. [21]O. Solgaard, F. Ho, J. L. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Applied Physics Letters, vol. 61, pp. 2500-2502, 1992. [22]H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sensors and Actuators B, vol. 87, pp.244-249, 2002. [23]F. Kim, J.H. Song and P. Yang, “Photochemical synthesis of gold nanorods,” Journal of American Chemistry Society, vol. 124, no. 48, pp.14316-14317, 2002. [24]J. Aizpurua, P. Hanarp and D.S. Sutherland, “Optical properties of gold nanorings,” Physical Review Letters, vol. 90, no. 5, pp.057401-1-057401-4, 2003. [25]B. Kim, S.L. Tripp and A. Wei, “Turning the optical properties of gold nanoparticle arrays,” Material Research Society, vol. 676, pp.Y6.1.1-Y6.1.7, 2001. [26]H. Bi, W. Cai and L. Zhang, “Annealing-induced reversible change in optical absorption,” Applied Physics Letters, vol. 81, no. 27, pp.5222-5224, 2002. [27]H. Bi, W. Cai, C. Kan and L. Zhang, “Optical study of redox process of Ag nanoparticle at high temperature,” Journal of Applied Physics, vol. 92, no. 12, pp.7491-7497, 2002. [28]I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sensors and Actuators B, vol. 54, 98-105, 1999. [29]X. Yu, D. Wang, D. Wang, Y. J. H. Ou, Z. Yan, Y. Zibo, Y. Dong, W. Liao, and X. S. Zhao, “Micro-array detection system for gene expression products based on surface plasmon resonance imaging,” Sensors and Actuators B, vol. 91, pp. 133-137, 2003. [30]P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B, vol. 54, pp. 166-175, 1999. [31]W. B. Lin, J. M. Chovelon, and N. J. Renault, “Fiber-optic surface-plasmon resonance for the determination of thickness and optical constants of thin metal films,” Applied Physics, vol. 39, pp. 3261-3265, 2000. [32]H. Raether, Surface plasmon on smooth and rough surfaces and on gratings, Germany, Springer-Verlag, pp. 1-12, 1988. [33]J. Čryroký, J. Homola, P.V. Lambeck, S. Musa, H.J.W.M. Hoekstra, R.D. Harris, J.S. Wilkinson, B. Usievich, and N.M. Lyndin, “Theory and modeling of optical waveguide sensors utilizing surface plasmon resonance,” Sensors and Actuators B, vol. 54, pp. 66-73, 1999. [34]J. C. Suits, “Magneto-optical rotation and ellipticity measurements with a spinning analyzer,” Rev. Sci. Instrum, vol. 42, pp. 19-22, 1971. [35]M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Optics Letters, vol. 9, pp. 319-321, 1984. [36]W. H. Stevenson, ”Optical frequency shifting by means of a rotating diffraction grating,” Applied Physics, vol. 9, pp. 649-652, 1970. [37]M. G. Gazalet, M. Raveg, F. Haine, C. Bruneel, and E. Bridoux, ”Acousto-optic low frequency shifter,” Applied Physics, vol. 33, pp. 1293-1298, 1994. [38]J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long known effect,” J. Opt. Sci. Am, vol. 59, pp. 950-954, 1969. [39]H. Takasaki, N. Umeda, and M. Tsukiji, “Stabilized transverse Zeeman laser as a new light source for optical measurement,” Applied Optics, vol. 19, pp. 435-441, 1980. [40]D. C. Su, M. H. Chiu, and C. D. Chen, ”Simple two frequency laser,” Prec. Eng, vol. 18, pp. 161-163, 1996. [41]Y. C. Cheng, W. K. Su, and J. H. Lion, “Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol” Opt. Eng, vol. 39, pp. 311-314, 2000. [42]W. Lu and W. M. Worek, “Two-wavelength interferometric technique for measuring the refractive index of salt-water solution,” Applied Optics, vol. 32, pp. 3992-4002, 1993. [43]A. Ahluwalia, G. Giusto, and D.D. Rossi, “Non-specific adsorption on antibody surfaces for immunosensing” Materials Science and Engineering, vol. C3, pp. 267-271, 1995 [44]M. N. Armenise,’’ Fabrication techniques of lithium niobate waveguide,’’ IEEE Proc., vol. 135, no. 2, pp. 85-91, April 1988. [45]E. Zolotysbko, Y. Avrahami, W. Sauer, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Applied Physics Letters, vol. 73, no.10, pp. 1352-1354, 1998. [46]Y.P. Liao, D.J. Chen, R.C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Tech. Lett., vol. 8, pp. 548-550, 1996. [47]A. Y. Yan, “Index instabilities in proton exchanged LiNbO3 waveguides,” Applied Physics Letters, vol. 42, pp. 633-635, 1983. [48]S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” Journal of Lightwave technology, vol. LT-5, no.5, pp. 700-708, 1987. [49]S. Link, Z. L. Wang, and M.A.E. Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B., vol.103, pp. 3529-3533, 1999. [50]A. Henglein, “Physicochemical properties of small metal particles in solution: "Microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition,” J. Phys. Chem., vol.97, pp. 5457-5471, 1993. [51]F. Kim, J.H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” Journal of American Chemistry Society., vol. 124, pp. 14316-14317, 2002. [52]M.T. Reetz, W. Helbig, and S.A. Quaiser, “Electrochemical preparation of nanostructural bimetallic clusters,” Chem. Mater., vol. 7, pp. 2227-2228, 1995. [53]T. Zhu, X. Fu, T. Mu, J. Wang, and Z. Liu, “PH-Dependent adsorption of gold nanoparticles on p-Aminothiophenol-modified gold substrates,” Langmuir, vol.15, pp. 5197-5199, 1999. [54]W.H. Scouten, J.H.T. Luong, and R.S. Brown, “Enzyme or protein immobilization techniques for applications in biosensor design,” Trends in Biotechnology, vol. 13, pp. 178-185, 1995. [55]R.C.J. Horton, T.M Herne, and D.C. Myles, “Aldehyde-terminated self-assembled monolayers on gold: immobilization of amines onto gold surfaces,” Journal of American Chemistry Society, vol. 119, pp. 12980-12981, 1997. [56]D.L. Allara, “Critical issues in applications of self-assembled monolayers,” Biosensors and Bioelectronics, vol. 10, pp. 771-783, 1995. [57]S. Ferretti, S. Paynter, D.A. Russell, K.E. Sapsford, and D.J. Richardson, “Self-assembled monolayers: a versatile tool for the formulation of bio-surface,” Trends in analytical chemistry, vol. 19, pp. 530-540, 2000. [58]A. Ulman, An introduction to ultrathin organic films : from lanmuir-blodgett to self-assembly, Boston, Academic, pp. 237 1991.
|