跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林煒晨
研究生(外文):Lin,Wei-Chen
論文名稱:反向再引伸應用於矩形杯多道次引伸之研究
論文名稱(外文):Study on the Application of Reverse Re-Drawing to Multi-Stage Drawing of Rectangular Cup
指導教授:黃德福黃德福引用關係
指導教授(外文):Hwang,Te-Fu
口試委員:黃德福鄭錦文張朝誠葉松瑋
口試委員(外文):Hwang,Te-FuCheng,Chin-wenChang,Chao-ChengYe,Song-Wei
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:117
中文關鍵詞:矩形杯高長寬比多道次引伸反向再引伸
外文關鍵詞:Rectangular CupHigh Aspect RatioMulti-Stage DrawingReverse Re-Drawing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
高長寬比矩形引伸產品應用領域十分廣泛,當中更常被應用於工業中電池容器或電子零件外殼。而這類矩形杯引伸產品通常因為其短邊與高度的比值較大,無法由單一道次完成加工,因此,勢必須進行多道次引伸加工。本研究嘗試結合反向再引伸的加工技術,利用成形時對於產品的內、外壁交互作用,可減緩內、外壁累積應力的特徵,藉以改善非對稱形狀且具高長寬比產品的成形性,進而達到減少引伸次數的目的。
本研究使用Dynaform有限元素分析軟體輔助模擬引伸加工,針對SUS304不銹鋼厚度0.8 mm板材,進行矩形杯多道次引伸成形參數對引伸成形高度、成品厚度分佈以及材料流動狀態之影響,並搭配實際開發模具與實驗,近一步驗證分析結果的可靠性,以做為往後矩形杯多道次引伸加工模具設計之參考。
研究結果顯示,反向再引伸模具成形性優於(h2=37.3 mm)直接再引伸模具(h2=27.8 mm),且因邊圓角輪廓距離(X2=5.02 mm)較大,引伸次數可減少(3 Stage);當胚料在引伸過程中發生起皺現象,會使胚料與模面接觸不均,起皺部位無法有效流入模穴進而發生破裂,在不發生起皺現象的條件下。使用圓胚料成形時,最大可成形直徑為100 mm,成形高度為41.54 mm;引伸時矩形杯直邊常需取成圓弧,當長邊圓弧半徑(RX1=191.48 mm、RX2=187.85 mm)越大,矩形杯則因長、短邊長度差異過大而造成金屬流動不均,在相同成形高度時材料在距胚料邊緣移動距離差距較大,變薄率較高;過小的沖頭圓角半徑(Rp1=0.8 mm、Rp2=1.6 mm)容易造成板材在角隅部外側受較大之拉伸應變,使材料過度薄化而發生破裂的現象。於實際引伸成形實驗成品的厚度分佈趨勢以及破裂位置,實測值均與模擬分析結果吻合。
Rectangular cups with high aspect ratio are widely used in an industrial battery container or electronic part case. Such rectangular cups usually have large ratio of height to the length of the short side and the multi-stage drawing stage instead of a single drawing stage is required to successfully forming processes. A reverse re-drawing processing, which would reduce the forming stress by the interaction of the inner and outer walls of the product during forming, is applied to improve the formability of rectangular cups with high aspect ratio to reduce the stages of drawing.
A software of Dynaform finite element analysis is used to simulated drawing processing in this study to investigate parameters of drawing for the stainless steel sheets, SUS304, of thickness 0.8 mm which would influence the distribution of the thickness, the drawing height and the material flow state. A set drawing die manufactured the experiments of drawing are conducted to verify the realities of the results of simulation which is used as a reference for the multi-stage drawing processing die design of the rectangular cup.
The simulation results indicate that the formability of the reverse re-drawing, which drawing height, h2, is 37.3 mm, is better than that of, h2 , 27.8 mm. And the stage of drawing can be reduced to 3 stage due to the larger edge contour distance, X2, is 5.02 mm. Wrinkling around the blank sheet during drawing causes uneven contact between the blank sheet and the die surface, so the wrinkle portion material cannot effective flow into the cavity of the die and occurs the crack.
A limit blank diameter designed to drawing of the rectangular cup in this study is 100 mm and the drawing height is 41.54 mm. The straight side of the rectangular cup need to modify to arc during drawing. As the arc of the long straight side of rectangular cup is larger, such RX1 is 191.48 mm, RX2 is 187.85 mm, the larger difference of material flow occurred between the long straight side and short straight side. Therefore the material moving distance from the edge of the blank has a large difference in many axial directions and the thinning rate of products becomes high.
As the punch fillet radius is small, such Rp1 is 0.8 mm, Rp2 is 1.6 mm, the corner portion on the outside is easy to be subjected to the large tensile strain which caused the thinning excessive to occur the crack. Conducted the drawing experiments, the distribution of thickness and ruptured position measured are good agreement with that of the simulation analysis.
摘要
ABSTRACT
誌謝
目錄
圖目錄
表目錄
符號說明
第一章 緒論
1-1 前言
1-2 沖壓成形
1-2-1 加工特徵及應用
1-2-2 優缺點及主要特色
1-2-3 應用領域及產品
1-3 引伸加工基本成形理論
1-3-1 引伸成形理論
1-3-2 矩形杯引伸成形理論
1-3-3 反向再引伸成形理論
1-4 材料性質及塑性變形理論
1-4-1不銹鋼之特性與種類
1-5 文獻回獻
1-5-1 引伸成形文獻
1-5-1 矩形杯引伸成形文獻
1-5-2 反向再引伸成形文獻
1-6 研究動機與目的
1-7 論文架構
第二章 研究方法與模型建立.
2-1有限元素法(Finite Element Method)基本理論
2-1-1分析軟體Dynaform功能介紹
2-1-2 Dynaform用戶自定義材料性質設定
2-2引伸成形模擬模型建立
2-2-1 胚料尺寸及工法規劃
2-2-2 反向再引伸模具介紹
2-3 模擬模型建立與參數規劃設定
2-3-1 模擬模型建立
2-3-2 材料性質設定
2-3-3 模擬參數規劃
2-4 模具設計
第三章 引伸成形模擬結果
3-1 模擬結果之定義
3-1-1 測量方向及位置之定義
3-1-2 材料流動狀態之判斷方式及定義
3-1-3 成形高度之定義
3-2 胚料參數之影響(Blank)
3-2-1 不同圓胚料直徑(Db)對變薄率、材料流動狀態之影響
3-3 第一道次初引伸成形參數之影響(1st Drawing)
3-3-1 不同矩形杯長邊圓弧半徑(RX1)對變薄率、材料流動狀態之影響
3-3-2 不同邊圓角圓角半徑(RC1)對變薄率之影響
3-3-3 不同沖頭圓角半徑(Rp1)對變薄率之影響
3-3-4 不同下模圓角半徑(Rd1)對變薄率之影響
3-4 第二道次再引伸成形參數之影響(2nd Drawing)
3-4-1 再引伸成形方式對變薄率與破裂點主應變之影響
3-4-2 不同邊圓角輪廓距離(X2)對變薄率之影響
3-4-3 不同矩形杯長邊圓弧半徑(RX2)對變薄率之影響
3-4-3 不同邊圓角圓角半徑(RC2)對變薄率之影響
3-4-4 不同沖頭圓角半徑(Rp2)對變薄率之影響
第四章 矩形杯多道次引伸成形實驗與模擬結果之比較
4-1 引伸成形實驗流程
4-2 實驗模具及研究設備介紹
4-2-1 初引伸之引伸成形模具介紹
4-2-2 反向再引伸之引伸成形模具介紹
4-2-3 萬能試驗機
4-2-4 電腦數控線切割機
4-2-5 表面輪廓儀
4-3 引伸成形實驗結果
4-3-1 不同圓胚料直徑於初引伸實驗與模擬之比較
4-3-2 固定壓料板間隙於不同圓胚料直徑於初引伸實驗與模擬之比較
4-3-3 不同圓胚料直徑於反向再引伸實驗與模擬之比較
第五章 結果與討論
5-1 結論
5-2 未來展望
參考文獻
附錄一 矩形杯多道次引伸加工實驗模具

[1]邱先拿、廖振昇、蔡添吉、魏江銘,1998,沖壓模具設計手冊,金屬工業研究發展中心
[2]崧彰企業,Electronic Parts,http://www.soja.com.tw
[3]瑞利企業股份有限公司,AM零件,http://www.juili.com.tw/am
[4]XXLGASTRO.DE,Gastro Behälter Edelstahl,https://www.xxlgastro.de/kleinger aete/gn-behaelter/
[5]福潮記工業股份有限公司,數位相機鏡頭環,http://www.aotron.com.tw
[6]Amazon.com Inc.,電腦保護套,https://www.amazon .com
[7]安寶角鋼有限公司,安寶黑砂紋角鋼衣架組,https://www.ambo6688.com/
[8]劉福興、鄭偉盛,2002,衝壓模設計,新文京開發出版有限公司
[9]杜東福,2005,冷衝壓工藝及模具設計,湖南科學技術出版社
[10]山口文雄、陳玉心,2012,連續沖壓模具設計之基礎與應用,全華圖書股份有限公司
[11]D.M. Neto, M.C. Oliveira a, J.L. Alves b, L.F. Menezes., 2014, ” Influence of the plastic anisotropy modelling in the reverse deep drawing process simula tion”, Material s and Design 60 (2014) 368–379.
[12]Breakeydown, 2008, “Typical Stress vs. Strain diagram for a ductile material”.
[13]HE Wilson - First Ireland,Stellar James Martin Cookware,https://www.firstireland. -com/tw/
[14]立善科技有限公司,不鏽鋼油壓升降平台車,https://www.accuplus.com.tw/。
[15]世協電機股份有限公司,不銹鋼行星式減速機,https://www.sesamemotor. -com/tw/
[16]M. Gotoh, M. Katoh, M. Yamashita, 1997, ” studies of Stretch-Drawing Process of Sheet Metals”, Journal of Materials Processing Teclmology 63 (1997) 123-128.
[17]Manabu Gotoh, Young-soo Kim and Minoru Yamashita, ” A Fundamental Study of Stretch-Drawing Process of Sheet Metals:Single and Double Operations”, METALS AND MATERIALS, Vol. 4, No. 3 (1998), pp. 436-443.
[18]Cebeli Özek & Muhammet Bal, 2009, “The effect of die/blank holder and punch radiuses on limit drawing ratio in angular deep-drawing dies”, Int J Adv Manuf Technol (2009) 40:1077–1083.
[19]Yasuo Marumo , Hiroyuki Saiki, Toshihiko Mori, 19999, ”Combined effects of strain hardening characteristics and tool geometry on the deep-drawability of square aluminum cups”, Journal of Materials Processing Technology 89–90 (1999) 30–36.
[20]Se-Ho Kim, Seung-Ho Kim, Hoon Huh, 2002, “Tool design in a multi-stage drawing and ironing process of a rectangular cup with a large aspect ratio using finite element analysis”, International Journal of Machine Tools & Manufacture 42 (2002) 863–875.
[21]T.W. Ku, B.K. Ha, W.J. Song, B.S. Kang, S.M. Hwang, 2002, “Finite element analysis of multi-stage deep drawing process for high-precision rectangular case with extreme aspect ratio”, Journal of Materials Processing Technology 130–131 (2002) 128–134.
[22]C.S. Park, T.W. Ku, B.S. Kang, S.M. Hwang, 2004, “Process design and blank modification in the multistage rectangular deep drawing of an extreme aspect ratio”, Journal of Materials Processing Technology 153–154 (2004) 778–784.
[23]Yuung-ming HUAN G, Shiao-cheng LU, 2011, “Analysis of elliptical cup drawing process of stainless sheet metal”, trans.Ninferrous Met. SOCchina 21(2011) 371-377.
[24]Yuung-Ming Huang, 2012, “An Analysis of the Elliptical Cup Hydraulic Drawing Process”, Computer-Aided Design & Applications, 9(3), 2012, 375-383.
[25]Jose Maria Gutierrez Regueras , Ana Maria Camacho Lopez,2014,” Investigations on the influence of blank thickness (t) and length/wide punch ratio (LD) in rectan -gular deep drawing of dual-phase steels”, Computational Materials Science 91 (2014) 134–145.
[26]Heng-Sheng Lin, Jian-Min He,2014, ”Elliptical redrawing from circular and elliptical cups”, Procedia Engineering 81 ( 2014 ) 899 – 904.
[27]Cebeli Özek & Muhammet Bal, 2009, ”The effect of die/blank holder and punch radiuses on limit drawing ratio in angular deep-drawing dies”, Int J Adv Manuf Technol (2009) 40:1077–1083.
[28]洪世偉,2000,不銹鋼方筒溫引伸與再引伸成形性之研究,國立台技大學,碩士論文
[29]黃興彥,2009,金屬板材U-Bend成形製成之分析,國立台灣科技大學,碩士論文
[30]Zhi-chao ZHANG, Yong-chao XU, Shi-jian YUAN,2016,” Reverse deep draw -ability of 5A06 aluminum alloy plate at elevated temperatures”, Trans. Nonferrous Met. Soc. China 26(2016) 1538−1545.
[31]趙海歐,2003,LS-DYNA軟件動力分析指南,上海卓位信息技術有限公司。
[32]王秀鳳、郎利輝,2008,板料成形CAE 設計及應用—基於DYNAFORM,北京航空航天大學出版社
[33]戴宜傑,1999,沖壓加工與沖模設計,新陸書局,楨文平板印刷有限公司。
[34]林于超,2011,不鏽鋼SUS304多孔板材圓杯引伸之成形極限分析,國立台灣科技大學,碩士論文
[35]MISUMI,2008,沖壓模具用標準零件,台灣三住
[36]電腦數控線切割機(慢走絲),聯盛機電工業股份有限公司
[37]TOMAS手動量測(小行程),力訓科技有限公司

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top