跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:譚暐
研究生(外文):Tan, Wei
論文名稱:用於奈米粒子捕捉與感測之表面電漿子領結型凹槽結構研究
論文名稱(外文):Study on plasmonic bowtie notch for nanoparticle trapping and sensing
指導教授:李柏璁李柏璁引用關係
指導教授(外文):Lee, Po-Tsung
口試委員:盧廷昌施閔雄張書維
口試委員(外文):Lu, Tien-ChangShih, Min-HsiungChang, Shu-Wei
口試日期:2018-10-22
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:51
中文關鍵詞:表面電漿子領結型凹槽奈米粒子捕捉光鑷子感測器侷域性表面電漿子共振光學補捉
外文關鍵詞:
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出了一新穎的表面電漿子領結型凹槽(plasmonic bowtie notch, PBN)結構,在功能上利用了領結形狀可在間隙(gap)間產生的間隙效應(gap effect)與避雷針效應(lightning-rod effect)使近場可均勻分佈並侷限在間隙間而產生高侷域及高增強的近場,再結合底部凹槽金屬層所給予的屏蔽效應(shielding effect)可迫使原本均勻分佈在間隙之間的高侷域近場再更往上擠壓形成超強及超侷域的近場。我們完整且有系統地研究其表面電漿行為並應用於奈米粒子的光學
捕捉(optical trapping)以及感測器(sensor),而我們主要著重於在表面電漿子領結型凹槽的參數優化設計上,包括:長度、間隙寬度、底部金屬層高度以及凹槽深度,我們觀察到透過適當的設計可以找出最有效提升場強的電荷分佈情形以及電場與被捕捉粒子間的交互作用的最佳情形,優化後使其產生的超強侷域電場來達到僅使用超低功率的雷射閥值能量即可穩定捕捉奈米粒子,模擬顯示,穩定捕捉100nm的聚苯乙烯(polystyrene, PS)粒子僅需0.98mW/μm^2的雷射光強度。此外結構也對於單顆粒子及環境折射率有高靈敏的感測應用而可作為感測器。未來期望此結構可被應用於奈米粒子捕捉與感測分析系統上且達到一同整合於晶片實驗室(lab-on-a-chip)系統的目標。
本論文無英文摘要。
摘要 i
致謝 ii
目錄 iii
圖片清單 v
表格清單 ix
第一章 簡介 1
1.1 光的操控 1
1.2 近場光鑷子 3
1.3 以奈米金屬結構為基礎之近場光鑷子 6
1.4 提出PBN結構之動機 10
第二章 模擬方法與實驗設置 12
2.1 模擬方法 12
2.1.1 有限元素分析法(finite element method, FEM) 12
2.1.2 光學捕捉力之計算 14
2.2 製程 17
2.3 量測系統 21
第三章 PBN結構的設計與光學特性 23
3.1 結構設計 23
3.2 調變底層金屬深度所造成之影響 24
3.3 調變凹槽高度以及間隙寬度所造成之影響 26
3.4 調變領結長度所造成之影響 29
第四章 奈米粒子的捕捉與感測之應用 36
4.1 奈米粒子的捕捉與感測 36
4.2 環境折射率感測 40
第五章 結論與未來展望 44
5.1 結論 44
5.2 未來展望 45
參考文獻 47
[1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and Steven Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[2] Karel Svoboda and Steven M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[3] A. Ashkin, J. M. Dziedzic and T.Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[4] A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[5] Keiji Sasaki, Masanori Koshioka, Hiroaki Misawa, Noboru Kitamura and Hiroshi Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
[6] Michael M. Burns, Jean-Marc Fournier and Jene A. Golovchenko, “Opical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[7] Michael P. Sheetz, “Laser tweezers in cell biology,” Methods Cell Biol. 55, 157–194 (1997).
[8] Steven B. Smith, Yujia Cui and Carlos Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271, 795–799 (1996).
[9] A.Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[10] Satoshi Kawata and Tadao Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–774 (1992).
[11] S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996).
[12] S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[13] Allen H. J. Yang, Sean D. Moore, Bradley S. Schmidt, Matthew Klug, Michal Lipson and David Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[14] Shiyun Lin, Juejun Hu, Lionel Kimerling and Kenneth Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34, 3451–3453 (2009).
[15] Yih-Fan Chen, Xavier Serey, Rupa Sarkar, Peng Chen and David Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[16] Pilgyu Kang, Xavier Serey, Yih-Fan Chen and David Erickson, “Angular orientation of nanorods using nanophotonic tweezers,” Nano Lett. 12, 6400–6407 (2012).
[17] Pilgyu Kang, Perry Schein, Xavier Serey, Dakota O’Dell and David Erickson, “Nanophotonic detection of freely interacting molecules on a single influenza virus,” Sci. Rep. 5, No. 12087 (2015).
[18] H. Raether, “Surface Plasmons,” Springer-Verlag, Berlin Heidelberg (1988).
[19] William L. Barnes, Alain Dereux and Thomas W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[20] A.D. Boardman, “Electromagnetic surface modes,” John Wiley and Sons, New York (1982).
[21] U. Kreibig and M. Vollmer, “Optical properties of metal clusters,” Springer-Verlag , Berlin Heidelberg (1995).
[22] Katherine A.Willets and Richard P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[23] Lukas Novotny, Randy X. Bian and X. Sunney Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[24] V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner and K. Dholakia1, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, No. 085417 (2006).
[25] Giovanni Volpe, Romain Quidant, Goncal Badenes and Dmitri Petrov, “Surface
plasmon radiation forces,” Phys. Rev. Lett. 96, No. 238101
(2006).
[26] A. N. Grigorenko, N. W. Roberts, M. R. Dickinson and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[27] M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcı´a de Abajo and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387-3391 (2009).
[28] Mathieu L. Juan, Reuven Gordon, Yuanjie Pang, Fatima Eftekhari and Romain Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[29] Pavel N. Melentiev, Anton E. Afanasiev, Artur A. Kuzin, Andrey S. Baturin and Victor I. Balykin, “Giant optical nonlinearity of a single plasmonic nanostructure,” Opt. Express 21, 13896–13905 (2013).
[30] Yuanjie Pang and Reuven Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
[31] Yuanjie Pang and Reuven Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[32] Ahmed A. Al Balushi, Ana Zehtabi-Oskuie and Reuven Gordon, “Observing single protein binding by optical transmission through a double nanohole aperture in a metal film,” Biomed. Opt. Express 4, 1504–1511 (2013).
[33] Ahmed A. Al Balushi and Reuven Gordon, “A label-free untethered approach to single-molecule protein binding kinetics,” Nano Lett. 14, 5787–5791 (2014).
[34] Ahmed A. Al Balushi and Reuven Gordon, “Label-free free-solution single-molecule protein-small molecule interaction observed by double-nanohole plasmonic trapping,” ACS Photonics 1, 389–393 (2014).
[35] Abhay Kotnala and Reuven Gordon, “Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins,” Biomed. Opt. Express 5, 1886–1894 (2014).
[36] Abhay Kotnala, Damon DePaoli and Reuven Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab Chip 13, 4142–4146 (2013).
[37] J. Berthelot, S. S. Ac’imovic’, M. L. Juan, M. P. Kreuzer, J. Renger and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nature nanotechnology 9, 295-299 (2014).
[38] I. A. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. W. Burr and F. I. Baida1, “Bowtie-shaped nanoaperture: a modal study,” Opt. Lett. 35, 2448-2450 (2010).
[39] Kai Wang, Ethan Schonbrun, Paul Steinvurzel and Kenneth B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, No. 469 (2011).
[40] Yuxin Zheng, Jason Ryan, Paul Hansen, Yao-Te Cheng, Tsung-Ju Lu and Lambertus Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971−2976 (2014).
[41] P. K. Jain, S. Eustis and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B, 110, 18243-18253 (2006).
[42] A. Vial, A. S. Grimault, D. Macías, D. Barchiesi and M. L. d. l. Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Physical Review B, 71, No. 085416 (2005).
[43] J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. V. Duyne, G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal Bioanal Chem, 394, 1819–1825 (2009).
[44] J. M Lin, “The finite element method in electromagnetics,” John Wiley and Sons, New York (2014).
[45] Michael Barth and Oliver Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, No. 253114 (2006).
[46] A. D. Rakić, A. B. Djurišić, J. M. Elazar and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998).
[47] Yi-Chang Lin and Po-Tsung Lee “Efficient optical trapping of nanoparticle via plasmonic bowtie notch,” IEEE photonics society, Reston, Virginia, USA (2018).
[48] Arif E. Cetin “FDTD analysis of optical forces on bowtie antennas for high-precision trapping of nanostructures,” Nano Lett. 5, 21-27 (2015).
[49] Nicolas Descharmes, Ulagalandha Perumal Dharanipathy, Zhaolu Diao, Mario Tonina and Romuald Houdréa, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13, 3268–3274 (2013).
[50] A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito and A. Cusano, “Lab-on-Fiber Devices as an all Around Platform for Sensing,” Optical Fiber Technology, 19, 772–784 (2013).
[51] Wei-Chuan Shih, Greggy M. Santos, Fusheng Zhao, Oussama Zenasni and Md Masud Parvez Arnob, “Simultaneous chemical and refractive index sensing in the 1−2.5 μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16, 4641−4647 (2016).
[52] Fei Cheng, Xiaodong Yang and Jie Gao1, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39, 3185-3188 (2014).
[53] Zheng Zeng, Xiaojun Shi, Taylor Mabe, Shaun Christie, Grant Gilmore, Adam W. Smith and Jianjun Wei, “Protein trapping in plasmonic nanoslit and nanoledge cavities: The behavior and sensing,” Anal. Chem. 89, 5221−5229 (2017).
[54] H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman and K. C. Toussaint, Jr., “Design, fabrication, and characterization of Near-IR gold bowtie nanoantenna arrays,” J. Phys. Chem. C 118, 20553−20558 (2014).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top