|
[1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and Steven Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [2] Karel Svoboda and Steven M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994). [3] A. Ashkin, J. M. Dziedzic and T.Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987). [4] A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [5] Keiji Sasaki, Masanori Koshioka, Hiroaki Misawa, Noboru Kitamura and Hiroshi Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991). [6] Michael M. Burns, Jean-Marc Fournier and Jene A. Golovchenko, “Opical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990). [7] Michael P. Sheetz, “Laser tweezers in cell biology,” Methods Cell Biol. 55, 157–194 (1997). [8] Steven B. Smith, Yujia Cui and Carlos Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271, 795–799 (1996). [9] A.Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [10] Satoshi Kawata and Tadao Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–774 (1992). [11] S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996). [12] S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005). [13] Allen H. J. Yang, Sean D. Moore, Bradley S. Schmidt, Matthew Klug, Michal Lipson and David Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009). [14] Shiyun Lin, Juejun Hu, Lionel Kimerling and Kenneth Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34, 3451–3453 (2009). [15] Yih-Fan Chen, Xavier Serey, Rupa Sarkar, Peng Chen and David Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012). [16] Pilgyu Kang, Xavier Serey, Yih-Fan Chen and David Erickson, “Angular orientation of nanorods using nanophotonic tweezers,” Nano Lett. 12, 6400–6407 (2012). [17] Pilgyu Kang, Perry Schein, Xavier Serey, Dakota O’Dell and David Erickson, “Nanophotonic detection of freely interacting molecules on a single influenza virus,” Sci. Rep. 5, No. 12087 (2015). [18] H. Raether, “Surface Plasmons,” Springer-Verlag, Berlin Heidelberg (1988). [19] William L. Barnes, Alain Dereux and Thomas W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [20] A.D. Boardman, “Electromagnetic surface modes,” John Wiley and Sons, New York (1982). [21] U. Kreibig and M. Vollmer, “Optical properties of metal clusters,” Springer-Verlag , Berlin Heidelberg (1995). [22] Katherine A.Willets and Richard P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007). [23] Lukas Novotny, Randy X. Bian and X. Sunney Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [24] V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner and K. Dholakia1, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, No. 085417 (2006). [25] Giovanni Volpe, Romain Quidant, Goncal Badenes and Dmitri Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, No. 238101 (2006). [26] A. N. Grigorenko, N. W. Roberts, M. R. Dickinson and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008). [27] M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcı´a de Abajo and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387-3391 (2009). [28] Mathieu L. Juan, Reuven Gordon, Yuanjie Pang, Fatima Eftekhari and Romain Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009). [29] Pavel N. Melentiev, Anton E. Afanasiev, Artur A. Kuzin, Andrey S. Baturin and Victor I. Balykin, “Giant optical nonlinearity of a single plasmonic nanostructure,” Opt. Express 21, 13896–13905 (2013). [30] Yuanjie Pang and Reuven Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011). [31] Yuanjie Pang and Reuven Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012). [32] Ahmed A. Al Balushi, Ana Zehtabi-Oskuie and Reuven Gordon, “Observing single protein binding by optical transmission through a double nanohole aperture in a metal film,” Biomed. Opt. Express 4, 1504–1511 (2013). [33] Ahmed A. Al Balushi and Reuven Gordon, “A label-free untethered approach to single-molecule protein binding kinetics,” Nano Lett. 14, 5787–5791 (2014). [34] Ahmed A. Al Balushi and Reuven Gordon, “Label-free free-solution single-molecule protein-small molecule interaction observed by double-nanohole plasmonic trapping,” ACS Photonics 1, 389–393 (2014). [35] Abhay Kotnala and Reuven Gordon, “Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins,” Biomed. Opt. Express 5, 1886–1894 (2014). [36] Abhay Kotnala, Damon DePaoli and Reuven Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab Chip 13, 4142–4146 (2013). [37] J. Berthelot, S. S. Ac’imovic’, M. L. Juan, M. P. Kreuzer, J. Renger and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nature nanotechnology 9, 295-299 (2014). [38] I. A. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. W. Burr and F. I. Baida1, “Bowtie-shaped nanoaperture: a modal study,” Opt. Lett. 35, 2448-2450 (2010). [39] Kai Wang, Ethan Schonbrun, Paul Steinvurzel and Kenneth B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, No. 469 (2011). [40] Yuxin Zheng, Jason Ryan, Paul Hansen, Yao-Te Cheng, Tsung-Ju Lu and Lambertus Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971−2976 (2014). [41] P. K. Jain, S. Eustis and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B, 110, 18243-18253 (2006). [42] A. Vial, A. S. Grimault, D. Macías, D. Barchiesi and M. L. d. l. Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Physical Review B, 71, No. 085416 (2005). [43] J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. V. Duyne, G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal Bioanal Chem, 394, 1819–1825 (2009). [44] J. M Lin, “The finite element method in electromagnetics,” John Wiley and Sons, New York (2014). [45] Michael Barth and Oliver Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, No. 253114 (2006). [46] A. D. Rakić, A. B. Djurišić, J. M. Elazar and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998). [47] Yi-Chang Lin and Po-Tsung Lee “Efficient optical trapping of nanoparticle via plasmonic bowtie notch,” IEEE photonics society, Reston, Virginia, USA (2018). [48] Arif E. Cetin “FDTD analysis of optical forces on bowtie antennas for high-precision trapping of nanostructures,” Nano Lett. 5, 21-27 (2015). [49] Nicolas Descharmes, Ulagalandha Perumal Dharanipathy, Zhaolu Diao, Mario Tonina and Romuald Houdréa, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13, 3268–3274 (2013). [50] A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito and A. Cusano, “Lab-on-Fiber Devices as an all Around Platform for Sensing,” Optical Fiber Technology, 19, 772–784 (2013). [51] Wei-Chuan Shih, Greggy M. Santos, Fusheng Zhao, Oussama Zenasni and Md Masud Parvez Arnob, “Simultaneous chemical and refractive index sensing in the 1−2.5 μm near-infrared wavelength range on nanoporous gold disks,” Nano Lett. 16, 4641−4647 (2016). [52] Fei Cheng, Xiaodong Yang and Jie Gao1, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39, 3185-3188 (2014). [53] Zheng Zeng, Xiaojun Shi, Taylor Mabe, Shaun Christie, Grant Gilmore, Adam W. Smith and Jianjun Wei, “Protein trapping in plasmonic nanoslit and nanoledge cavities: The behavior and sensing,” Anal. Chem. 89, 5221−5229 (2017). [54] H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman and K. C. Toussaint, Jr., “Design, fabrication, and characterization of Near-IR gold bowtie nanoantenna arrays,” J. Phys. Chem. C 118, 20553−20558 (2014).
|