跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀承佑
研究生(外文):Cheng-Yo Chi
論文名稱:以固態反應法製備Ba(Fe1-xScxNb)0.5O3 (x = 0~1)陶瓷之結構及介電的影響
論文名稱(外文):Effect of Sc3+ ion-doped on structure and dielectric properties of Ba(FeNb)0.5O3 ceramics prepared using solid state reaction method
指導教授:張益新
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:固態反應法BFN高介電材料
外文關鍵詞:Solid state reaction methodBFNHigh dielectric material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以兩次混合固態反應法來製備複合型鈣鈦礦結構Ba(Fe1-xScxNb)0.5O3 (BSFN)的陶瓷材料,以及以同價數的Sc3+離子取代Fe3+之離子。第一階段煆燒段形成(Fe1-xScxNb)O4,在添加碳酸鋇(BaCO3)後,接續進行第二階段煆燒形成Ba(Fe1-xScxNb)0.5O3之複合型鈣鈦礦陶瓷。
由XRD分析結果可以得知,全部之陶瓷樣品為單一相的Cubic鈣鈦礦結構。隨著Sc2O3摻雜量提高,可以觀察到繞射峰(110)往低角度偏移,且密度會下降。大量Sc3+的離子摻雜可以有效減少介電損失,但會犧牲介電常數。最佳介電性質為7mol%的Sc2O3摻雜,在1kHz頻率下量測,其介電常數及介電損失約分別為50000與0.9。樣品介電常數會隨著頻率增加而降低,為典型鐵電材料的弛緩特性。由Cole-Cole plot分析結果可以觀察到有兩個半圓存在,證實BSFN是屬於多重消散性弛緩過程。晶粒與晶界受到半導化影響,阻抗隨著溫度上升而降低,且晶粒與晶界之阻抗差異所形成之晶界層電容有較高的介電常數。
In this investigation, complex perovskite structure Ba(FeNb)0.5O3:Sc ceramic was prepared using two step solid state reaction. The Fe3+ ion is substituted with the same valence of Sc3+ ion to form Ba(Fe1-xScxNb)0.5O3 (x = 0~1) ceramic. (Fe1-xScxNb)O4 is formed by calcination in the first step. Afterwards, BaCO3 is added into the (Fe1-xScxNb)O4 in the second step, and then the complex perovskite structure Ba(Fe1-xScxNb)0.5O3 (x = 0~1) is formed when they were calcined at a high temperature.
The results of XRD analysis show that all ceramic samples are single phase of cubic complex perovskite structure. With Sc2O3 doping increasingly, the position of diffraction plane (110) shifts to a lower angle region, and its relative density decreases. When a large amount of Sc3+ ion is doped, the dielectric loss is effectively reduced, but sacrifices dielectric constant. The optimum dielectric property is doped with 7% Sc2O3 that the dielectric constant is about 50000 and the dielectric loss is about 0.9 at 1 kHz. The dielectric constant of sample decreases with increasing frequency, which is the relaxation characteristic of a typical ferroelectric material. By the results of Cole-Cole plot analysis, there are two semicircles exist which confirms that BSFN possesses a multiple dissipation relaxation process.
By the characteristics of semiconductivity, the impedance of the grain and grain boundary decreases with the rise of temperature, and the grain boundary layer’s capacitance which formed by the difference impedance between the grain and grain boundary leading to a high dielectric constant for Ba(Fe1-xScxNb)0.5O3 ceramics.
摘要......i
Abstract......ii
誌謝......iv
目錄......v
表目錄......vii
圖目錄......viii
第一章 緒論......1
1-1 前言......1
1-2鈦酸鋇之介電材料......1
1-3研究動機......2
1-4 研究目的......3
第二章 基礎理論......9
2-1 介電理論......9
2-1-1 介電原理......9
2-1-2 極化機制......10
2-1-3 介電損失......11
2-1-4 介電特性......12
2-2 強介電理論......12
2-2-1 強介電性質......12
2-2-2 強介電性之晶體結構......13
2-2-3 強介電性材料之應用......13
2-3 複合型鈣鈦礦......14
2-3-1複合型之組成結構......14
2-3-2結構置換作用......15
2-3-3容忍因子......15
2-3-4弛緩性質......16
2-4 缺陷化學與掺雜物之特性......17
2-4-1 陶瓷缺陷......17
2-4-2 Kröger-Vink缺陷化學符號......17
2-4-3 離子摻雜之特性......17
2-5 固態反應法及反應燒結法......18
2-5-1 固態反應法機構......18
2-5-2 固態反應法之優缺......18
2-5-3反應燒結法機構......19
2-5-4反應燒結法之優缺......19
2-6燒結過程及理論......19
2-6-1燒結基本原理......19
2-6-2 幾何形狀的考量......20
2-6-3 粉末顆粒大小對燒結行為的影響......20
2-6-4 晶粒成長......21
2-6-5 晶粒成長的發生及驅動力......21
2-6-6 晶粒成長的類型......21
2-7 助熔劑......21
2-8 晶障型電容......22
2-8-1晶域與晶界......22
2-9 阻抗分析原理......22
第三章 實驗方法......38
3-1 實驗方法......38
3-2 實驗藥品......38
3-3 實驗流程......38
3-4 結構分析與性質量測......38
3-4-1 X光繞射分析......38
3-4-2 場發射掃描式電子顯微鏡分析(FE-SEM )......39
3-4-3 密度量測......39
3-4-4 X射線光電子能譜儀(XPS)......39
3-4-5 介電性質量測 ......40
3-4-6 化學分析電子能譜儀(ESCA)......40
3-4-7 阻抗分析量測(cole-cole plot)......40
第4章 結果與討論......43
4-1 以固態反應法合成Ba(Fe1-xScxNb)0.5O3之鈣鈦礦結構......43
4-1-1 Ba(Fe1-xScxNb)0.5O3之晶體結構......43
4-1-2密度量測......44
4-1-3 FE-SEM表面結構分析......44
4-1-4 摻雜Sc3+離子對氧空缺及Fe2+/Fe3+的影響......45
4-1-5 介電性質分析......46
4-1-6 阻抗分析量測......48
第五章 結論......65
5-1.以兩階段煆燒固態反應法合成Ba(Fe1-xScxNb)0.5O3(x=0 ~1)......65
5-1-1 Ba(Fe1-xScxNb)0.5O3(x=0~1)結構分析......65
5-1-2 Ba(Fe1-xScxNb)0.5O3(x=0~1)介電分析......65
5-1-3 Ba(Fe1-xScxNb)0.5O3(x=0~1)性質分析......66
參考文獻......67
Extended Abstract......71
簡歷......74
[1]林士欽,“陶瓷晶片電容性質介紹及在電源模組上之應用”,工業材料雜誌,178期P .93
[2]薛立人,“超高電容器的應用深遠弘廣”,工業材料雜誌,128期 P.133
[3]M. Yokosuka, “Dielectric Dispersion of the Complex Perovskite Oxide Ba(Fe1/2Nb1/2)O3 at Low Frequencies”, Jpn. J. Appl. Phys. 34 (1995) 5338.
[4]S. Saha, T. P. Sinha, “Low-temperature scaling behavior of BaFe0.5Nb0.5O3”, Phys. Rev. B: Condens. Matter 65 (2002) 134103.
[5]V. A. Bokov and I. E. Myl,nikova, 1961,“Electrical and Optical Properties of Single Crystals of Ferroelectric with a Diffuse Phase Transition”, Sov. Phys. Solid State 3[3] 613.
[6]G. A. Smolenskii and A. I. Agranovskaya, 1960, “Dielectric Polarization of a Number of Complex Compounds”, Sov. Phys. Solid State 1 1429.
[7]S. L. Swartz,T. R. Shrout,W. A. Schulze and L. E. Cross, 1984, “Dielectric Properties of Lead-Magnesium Niobate Ceramics”, J. Am. Ceram. Soc. 67 311.
[8]T. T. Fang and H. K. Shiau, 2004, “Mechanism for Developing the Boundary Barrier Layers of CaCu3Ti4O12” J. Am. Ceram. Soc., 87 2072.
[9]S. Saha and T. P. Sinha, 2002, “Structure and dielectric of Ba(FeNb)0.5O3” J. Phys. Condens Matter, 14 249-258.
[10]Z. Wang, X. M. Chen, L. Ni, Y. Y. Liu and X. Q. Liu, 2007, “Dielectric relaxations in Ba(Fe1/2Ta1/2)O3 giant dielectric constant ceramics”, Appl. Phys. Lett. 90 102905.
[11]M. Yokosuka,1995,“Dielectric Dispersion of the Complex Perovskite Oxide Ba(Fe1/2Nb1/2)O3 at Low Frequencies”, Jpn. J. Appl. Phys. 34 5338.
[12]S. Saha and T. P. Sinha, 2002, “Low-temperature scaling behavior of BaFe0.5Nb0.5O3”, Phys. Rev. B: Condens. Matter 65 134103.
[13]鍾朝宇,2005,“複合型鈣鈦礦Ba1-xAx(Fe0.5Nb0.5)1-x/4O3(A=La、Bi)之介電性質研究”,國立成功大學材料科學及工程博士論文
[14]廖琨逢,2009,“低價數補償Ba1-xMx(Fe0.5Nb0.5)+x/4O3(A=Na、K)系列之介電性質研究”,國立虎尾科技大學光電與材料所碩士論文
[15]A. Dutta and T.P. Sinha, 2011, “Structural and dielectric properties of A(Fe1/2Ta1/2)O3 [A = Ba, Sr, Ca] ”, Mater. Res. Bull. 46 518-524.
[16]I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya and L. Jastrabik, 2003, “High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A=Ba, Sr, Ca ; B=Nb, Ta, Sb) ”J. Appl. Phys. 93 4130.
[17]A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt and S. M. Shapiro, 2000, “Giant dielectric constant response in a copper-titanate”, Solid State Commun. 115 217.
[18]M. A. Subramanian, D. Li, N. Duan, B. A. Reisner and A. W. Sleight, 2000, “High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases”, J. Solid State Chem. 151 323.
[19]吳朗,1994,“電子陶瓷-介電陶瓷”,全欣科技圖書。
[20]Z.Fan, K.Sun, J.Wang, “Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites”, Journal of Materials Chemistry A,Issue 37, 2015
[21]William D. Callister JR., “Materials Science and Engineering an Introduction 6/e”, WILEY (2003).
[22]A. J. Moulson and J. M. Herbert, “Electroceramics-Materials, Properties, Applications”, Chapman and Hall, 2002.
[23]黃國長,2006,“GdFeO3-GdInO3強介電磁功能性陶瓷材料之開發與性質研究”,國立東華大學材料科學與工程研究所碩士論文,p.11。
[24]M. W. Barsoum, “Fundamentals of Ceramics”, Mc Graw Hill.
[25]汪建民,1987,“精密陶瓷技術概論”,工業技術出版社,p.8-9, p.附錄 A-19。
[26]盧志權,“新世紀科技-自旋電子學與自旋電子元件簡介”,工業材料雜誌,169期(2001) p.117
[27]吳朗,“電子陶瓷-壓電”,全欣資訊圖書 (1994)
[28]C. Ederer, N. A. Spaldin, “Recent progress in first-principles studies of magnetoelectric multiferroics”, Curr. Opin. Solid State Mater. Sci. 9 (2005) 128.
[29]P. Q. Mantas, “Dielectric Response of Materials: Extension to the Debye Model”, J. Eur. Ceram. Soc. 19 (1999) 2079.
[30]陳建宏,“強介電記憶體之發展”,工業材料雜誌,155期 (1999) p.147
[31]J. L. Chen, M.Y. Shieh, H. H. Yu, C. Liao, H. M. Chang, B. H. Yang and Z. P. Zhao, “Asymmetric reflectivity from surfaces with distributed dipoles and IR experiments on poled polyvinylidene difluoride films”, Appl. Phys. Lett. 93 (2008) 011902.
[32]Y. Y. Liu, X. M. Chen, X. Q. Liu and L. Ni, “Giant dielectric response and relaxor behaviors induced by charge and defect ordering in Sr(Fe1/2Nb1/2)O3 ceramics”, Appl. Phys. Lett. 90 (2007) 192905.
[33]Y. J. Hsiao,Y. S. Chang,T. H. Fang,Y. L. Chai,C. Y. Chang and Y.H. Chang, “High dielectric permittivity of Li and Ta codoped NiO ceramics”, J. Phys D: Appl. Phys. 40 (2007) 863.
[34]吳朗,“電工材料”,滄海圖書 (1998)
[35]基特,(Charles Kittel)原著,洪連揮,劉立基,魏榮君譯,“固態物理學導論(第七版) ”,高立 (2004)
[36]彭成鑑,“強介電薄膜材料技術專題導言”,工業材料雜誌,155期 (1999) p.120
[37]S. Yangyun and R.J. Brook, 1985, “Preparatiom of Zirconia-Toughened Ceramics by Reaction Sintering”, 17 [1] 35-47.
[38]Y. C. Liou, 2004, “Effect of heating rate on properties of Pb(Mg1/3Nb2/3)O3 ceramics produced by the reaction-sintering process”, Mater. Lett. 58 944-947.
[39]Y. C. Liou and C. T. Wu, 2008, “Synthesis and diffused phase transition of Ba0.7Sr0.3TiO3 ceramics by a reaction-sintering process”, Ceram. Int. 34 517-522.
[40]Y. C. Liou, C. T. Wu and T. C. Chung, 2007, “Synthesis and microstructure of SrTiO3 and BaTiO3 ceramics by a reaction-sintering process”, J. Mater. Sci. 42:3580-3587.
[41]于若軍,1985,“現代陶瓷工程學”,全華圖書。
[42]蕭富山,2000,“修正型統計燒結理論評估位添加、氧化鎂及氧化鋯添加氧化鋁燒 結行為及顯微結構演進”,國立成功大學材料科學及工程博士論文。
[43]R.L Coble, “Sintering Crystalline Solids. I. Intermediate and final State Diffusion Models” J. Appl. Phy. 32 (1961) 787
[44]R. L. Coble, “Sintering Crystalline Solids. Ⅰ. Intermediate and Final State Diffusion Models” J. Appl. Phys. 32 (1961) 787
[45]C. Greskovich and J. H. Rosolowski, “Sintering of Covalent Solids” J. Am. Ceram. Soc. 59 (1976) 336C. Herring, “Effect of Change of Scale on Sintering Phenomena” J. Appl. Phys. 21 (1950) 301.
[46]D. W. Budworth, “Theory of Pore Closure during Sintering” Trans. Brit. Ceram. Soc. 69 (1970) 29.
[47]C. Herring, “Effect of Change of Scale on Sintering Phenomena” J. Appl. Phys. 21 (1950) 301.
[48]張益新,2004,“鈦鐵礦結構Zn1-xAxTi1-yByO3之合成及性質研究”國立成功大學材料科學及工程研究所博士論文。
[49]許志雄,2006,王木琴,許蕙如,“玻璃-排列不規則的固體”,科學發展,406 期 ,p.6。
[50]劉士山,2001,“鋁電解電容器的阻抗特性”,工業材料雜誌,176期 p.132。
[51]K. S. Cole and R. H. Cole, “Dispersion and Absorption in Dielectric”, J. Chem. Phys, 1941. 9 341.
[52]R. M. German, “Sintering Theory and Practice”, John Wiley & Son, 1996.
[53]A. R. West, D. C. Sinclair and N. Hirose, “Characterization of Electrical Materials, Especially Ferroelectric, by Impedance Spectroscopy”, J. Electroceram. 1 (1997) 65.
[54]K. Lichtenecker, “Dielectric Constant of Natural and Synthetic Mixtures” ,Phys. Z.,27 (1926) p.115.
[55]G. V. Lewis and C.R.A. Catlow, J. Phys. Chem. 47 (1986) 89
[56]Macchi, C., Somoza, A., Dupasquier, A., Lopez., A Castro and M. Castro, “positron trapping in BaTiO3 perovskite”, J. Phy: Condens. Matter 13 (2001) 5717.
[57]M. Mohsen, R. K. Rehberg, A. M. Massoud and H. T. Langhammer, “Donor-doping effect in BaTiO3 ceramic using positron annihilation spectroscopy”, Radiation Phys. Chem. 68 (2003) 549
[58]F. D. Morrison, D. C. Sinclair and A. R. West, “Doping mechanisms and electrical properries of La-doped BaTiO3 ceramics”, International J. of Inorganic Mater. 3 (2001) 1205
[59]R. Moos and K. H. Härdtl, “Defect Chemistry of Donotr-Doped and Undoped Strontium Titanate Ceramics between 1000o and 1400oC”, J. Am. Ceram. Soc. 80 (1997) 2549.
[60]Z. Wang, L.L. Zhang, Y.P. Pu, “Ba0.4Sr0.6(Fe0.5Nb0.5)O3 ceramics with extended giant dielectric constant step and reduced dielectric loss”, J. Alloys Comp. 586, 420–425 (2014)
[61]B. Angadi, V. M. Jali, M. T. Lagare, V. V. Bhat, A. M. Umarji and R. Kumar, “Radiation resistance of PFN and PMN-PT relaxor ferroelectrics” , Radia. Measure. 36 (2003) 635
[62]L. Zhou, P. M. Vilarinho, P. Q. Mantas, J. L. Baptista and E. Fotunato, “The effects of La on the dielectric properties of lead iron tungstate Pb(Fe2/3W1/3)O3 relaxor ceramics” , J. Euro. Ceram. Soc. 20 (2000) 1035
[63]Y. Park, “Low-frequency-dispersion of Pb(Fe1/2Nb1/2)O3 single crystal in the region of its paraelectric ferroelectric phase transition”, Solid State Commun. 113 (2000) 379
[64]K. Kinoshita and A. Yamaji, 1976, “Grain-size effect on dielectric properties in barium titanate ceramics”, Journal of Applied Physics, 47 ,371.
[65]G. Arlt, D. Hennings and G. de With ,1985, “Dielectric properties of fine-grained barium titanate ceramics”, Journal of Applied Physice, 58 ,1619.
[66]W. H. Jung, J. H. Lee, J. H. Sohn, H. D. Nam and S. H. Cho, 2002, “Dielectric loss anomayly in Ba(Fe1/2Ta1/2)O3 ceramics” , Materials Letters, 56, 334.
[67]W. H. Jung and E. Iguchi, 1996, “Transition from hopping conduction to band conduction in LaxFexNi1-xO3” Philosophical Magazine B. 73 873.
[68]A.K Jonscher, “Dielectric relaxation in Solid”, Chelsea Dielectric Press Limited, London (1983) p.76
[69]A.R West, T.B. Adams, F.D Morrison and D.C. Sinclair, “Novel high capacitance materials: BaTiO3:La and CaCu3Ti4O12”, J. Euro. Cream. Soc., 24(2004) 1439
[70]N. Yamaoka, “SrTiO3-Base Boundary Layer Capacitors”, Am. Cream. Soc., 24(2004) 1439.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top