跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王政耀
研究生(外文):Cheng-Yao Wang
論文名稱:‘小梅’紅龍果之結果特性、果實品質及對莖潰瘍病(Neoscytalidium dimidiatum)之耐病性
論文名稱(外文):The Fruit Setting, Quality and Tolerance to Stem Canker (Neoscytalidium dimidiatum) in ‘Mei’ Pitaya.
指導教授:林慧玲林慧玲引用關係
口試委員:謝慶昌王自存許仁宏
口試日期:2019-07-04
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:紅龍果無刺莖潰瘍病耐病品系成熟度果實品質
外文關鍵詞:pitayathronlessstem cankerdisease tolerant linematurityfruit quality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
紅龍果為近年來發展極為快速的新興果樹,因栽培容易、適應性廣,深受栽培者喜愛。然而隨著栽培面積的增加,連帶病害問題也逐漸浮現,其中以莖潰瘍病(Neoscytalidium dimidiatum)為害最為嚴重,會造成肉質莖潰爛,果實表皮出現塊狀褐斑,嚴重降低商品價值。針對此病害,除了使用化學藥劑防治外,篩選出具有抗病之品系,也是一種有效的解決方式。‘小梅’紅龍果為紅肉種,肉質莖具備短刺特色,管理上不易被刺傷,但普遍認為此類型果實品質差,風味淡薄,因此栽培者並不多。本研究將探討‘小梅’紅龍果之結果特性、果實品質及莖潰瘍耐病性,並進而評估該品系紅龍果是否具備成為商業栽培種之潛力。

為探討植株結果特性,分別進行自花、自然與人工等不同的授粉方式,結果顯示不同授粉方式皆可著果,且果實大小、重量、醣度與酸度於各處理間均無顯著差異,證實‘小梅’品系具備自交親和之特性。果實品質的部分,成熟的‘小梅’果實平均果重623 g,果心的可溶性固形濃度為20.6°Brix,可滴定酸0.25%,果肉略帶有草香味。病害耐受性試驗,以潰瘍病孢子懸浮液(106 spore/mL)接種於成熟的果實與肉質莖上,於果實接種後11日的結果顯示,‘大紅’品系果實耐病力最差,罹病指數達5(80-100%病斑面積);而‘小梅’、‘富貴紅’與‘越南白肉’較耐病,果實罹病指數介於2-4之間(20-80%病斑面積)。而在肉質莖部分,接種後19日,‘小梅’與‘宜蘭紅肉’的病斑直徑分別為0.13cm與0.61cm,顯示出‘小梅’成熟的肉質莖具有高度的耐病性。整體而言,‘小梅’紅龍果於結果特性、果實品質及耐潰瘍病等性狀具有成為商業栽培種之潛力。
Pitaya is a new and rapidly progressing fruit crop in Taiwan. It is popular among growers, due to its easy cultivation and wide adaptability. However, as the cultivated area increases, the associated disease problems also gradually emerge. Among them, stem canker disease (Neoscytalidium dimidiatum) is the most serious, which causes rotten stem, and lumpy brown spots in fruit skin, and significantly reduces the quality of pitaya fruit. To control this disease, in addition to the application of chemical agents, screening of disease-resistant lines is also an effective strategy. ‘Mei’ is a red pitaya cultivar and its stem has short thorn characteristics and does not stab farmers in corp management. However, it is generally believed that its fruits have inferior quality and light flavor. This study first investigated the fruit setting, quality and disease tolerance to stem canker in ‘Mei’ Pitaya, and then evaluated whether this pitaya cultivar has the potential to become a commercial cultivar.

The characteristics of fruit setting, self-pollination, open-pollination and hand-pollination experiments were conducted. Our results showed that all different pollination methods might result in fruit setting, and there were no difference in fruit size, weight, total soluble solid (TSS) and titratable acidity (TA) among different pollination methods, suggesting that ‘Mei’ pitaya is self-compatibility. In terms of fruit quality, the average mature fruit weight in ‘Mei’ was 623 g, TSS was 20.6° Brix (center of flesh), and TA was 0.25% with a slightly grassy aroma in flesh. For the disease tolerance test, the spore suspension (106 spore/mL) was inoculated on the mature fruit and the stem. Our results showed that 11 days after inoculation, the disease tolerance of ‘Da hong’ is the worst with the disease severity index reaches 5 (80-100% rotted area). ‘Mei’, ‘Fu gui hong’ and ‘Vietnamese white’are more tolerant to disease with the fruit disease severity index between 2-4 (20-80% rotted area). In the stem portion, the lesion diameter of ‘Mei’ and ‘Yi lan’ at 19 days after inoculation were 0.13cm and 0.61cm. Results from this study indicated that the mature stem of ‘Mei’ has high disease resistance. Taken together, ‘Mei’ pitaya has the potential of becoming a commercial cultivar based on its fruit setting, quality and stem canker disease tolerance.
摘要 i
Summary ii
目次 iii
圖目次 iv
表目次 vi
壹、 前言 1
貳、 前人研究 2
一、 無刺紅龍果的來源與潰瘍病耐病力 2
二、 紅龍果的生長、開花與著果習性 3
三、 紅龍果果實生長及發育 3
四、 紅龍果病害 6
五、 植物防禦系統 8
參、 材料方法 10
一、 ‘小梅’紅龍果的開花授粉方式對果實生長及品質之影響 10
二、 ‘小梅’紅龍果果皮轉色期間果實品質之變化 12
三、 ‘小梅’紅龍果果實與商業品系果實品質之比較 14
四、 ‘小梅’紅龍果與商業品系紅龍果果實潰瘍病接種耐病試驗 17
五、 ‘小梅’紅龍果與‘宜蘭紅肉’紅龍果肉質莖潰瘍病耐病之比較 20
肆、 結果 22
一、 ‘小梅’紅龍果的開花授粉方式對果實生長及品質之影響 22
二、 ‘小梅’紅龍果果皮轉色期間果實品質之變化 26
三、 ‘小梅’紅龍果果實與商業品系果實品質之比較 30
四、 ‘小梅’紅龍果與商業品系紅龍果果實潰瘍病接種耐病試驗 37
五、 ‘小梅’紅龍果與‘宜蘭紅肉’紅龍果肉質莖潰瘍病耐病之比較 47
伍、 討論 57
一、 ‘小梅’紅龍果的開花授粉方式對果實生長及品質之影響 57
二、 ‘小梅’紅龍果果皮轉色期間果實品質之變化 58
三、 ‘小梅’紅龍果果實與商業品系果實品質之比較 58
四、 ‘小梅’紅龍果與商業品系紅龍果果實潰瘍病接種耐病試驗 59
五、 ‘小梅’紅龍果與‘宜蘭紅肉’紅龍果肉質莖潰瘍病耐病之比較 60
陸、 結論 62
柒、 參考文獻 63
方信秀、李文立、黃基倬、梁佑慎。2016。不同套袋材料對‘玉荷包’荔枝果實著色與農藥殘留之影響。 臺灣農業研究。65(2):184-193。

江一蘆。2012。紅龍果花期調節之研究。國立臺灣大學生物資源暨農學院園藝暨景觀學系博士論文。臺灣:臺北。

行政院農業委員會農糧署。2018。農情調查資訊查詢。<https://agr.afa.gov.tw/afa/afa_frame.jsp>。

李家輝。2015。紅龍果肉質莖礦物營養調查、花芽誘導與抗莖潰瘍病品系篩選。國立中興大學園藝學系碩士論文。臺灣:臺中。

吳昭其。1988。‘繁花’入菜來--復興合作農場供應仙人掌嫩花。農業週刊 14(36):2-3。

邱禮弘。2009。紅龍果有機栽培技術。臺中區農業改良場特刊。96:133-139。

邱禮弘。2012。優質紅龍果著果期間的管理事項。臺中區農情月刊。149。

洪筱雁。2017。耐莖潰瘍病紅龍果品系篩選及耐病育種。國立中興大學園藝學系碩士論文。臺灣:臺中。

倪蕙芳、黃巧雯、許淑麗、賴素玉、楊宏仁。2013。紅龍果莖潰瘍病之病原特性及防治藥劑篩選。臺灣農業研究。62(3):225-234。

倪蕙芳、楊宏仁、黃巧雯、林靜宜、林筑蘋、安寶貞、蔡至濃。2015。紅龍果莖潰瘍病病原特性及防治研究。臺灣紅龍果生產技術改進研討會專刊。p. 81-91。

徐萬德。2004。Hylocereus spp.仙人掌紅龍果之栽培、生育習性及物候調查。國立臺灣大學園藝學研究所碩士論文。臺灣:臺北。

張與林,1995。桶相果實生長期間可溶性醋類及有機酸之變化。台南農業改。良場研究彙報32 : 67-75。
張鳳如、顏昌瑞。1997。仙人掌果(Hylocereus undatus Britt. & Rise)之開花及果實生長。中國園藝。43:314-321。

梁文進。2005。紅龍果。臺灣農家要覽植物保護篇。p. 127。

陳奕君、林延諭。2016。遮光處理對防範紅龍果肉質莖日燒傷害之研究。臺中區農業改良場研究彙報。26:41-58。

陳發興、劉星輝、陳立松。2005。果實有機酸代謝研究進展。果樹學報。22(5):526-531。

陳盟松。2017。臺灣紅龍果產期調節技術發展。果樹產期調節研究發展與產業調適研討會論文輯。p. 91-100。

黃琇亭。2008。紅龍果果實生長期間果實和肉質莖組成份變化及對套袋、環剝和砷酸鉛之反應。國立中興大學園藝學系碩士論文。臺灣:臺中。

楊原凱。2016。桑黃 (Phellinus linteus)子實體所含醣苷水解酵素及生物活性研究。靜宜大學食品營養學系碩士論文。臺灣臺中。

葉士財、尤澤森、謝慶昌。2016。紅龍果濕腐病及煤煙病之發生與預防。 臺中區農業改良場特刊。131:71-88。

葉洹瑜。2012。臺灣紅龍果莖部潰瘍病之研究。國立臺灣大學生物資源暨農學院植物病理與微生物學研究所碩士論文。臺灣:臺北。

劉碧鹃。2010。臺灣紅龍果的栽培。農業試驗所特刊。144。

劉碧鵑、許敏記、姚秋嫻、蘇登呼、陳亭安、余建美、陳盟松、蔡宜峰、邱一中、黃毓斌、林筑蘋、蔡志濃、安寶貞、鄧汀欽、謝明樹、謝慶昌、吳俊達、詹明輝、黃慶文、徐慈鴻、郭怡欣、吳庭嘉。2018。紅龍果栽培一本通。財團法人豐年社。臺灣臺北。181 pp。

蔡正壽。2003。紅龍果(Hylocereus undatus Britt.& Rose)異種授粉對果實形質之影響。國立中興大學園藝學系碩士論文。臺灣:臺中。

蔡至濃 、林筑蘋、安寶貞、鄧汀欽、廖吉彥、倪蕙芳、楊宏仁。2013。紅龍果的重要病害及其防治(上)。農業試驗所技術服務。95:1-4。

蔡至濃 、林筑蘋、安寶貞、鄧汀欽、廖吉彥、倪蕙芳、楊宏仁。2013。紅龍果的重要病害及其防治(下)。農業試驗所技術服務。96:4-7。

廖苑吟。2012。暗期中斷對紅龍果(Hylocereus polyrhizus)芽體分化與萌花之影響 國立臺灣大學園藝學研究所碩士論文。臺灣臺北。53 pp。

顏昌瑞。1985。紅龍果。臺灣農家要覽農作篇(二)。p. 173-176。

顏昌瑞、陳丁河、江一蘆。2015。世界紅龍果產業概況。臺灣紅龍果生產技術改進研討會專刊。p. 19-27。


Ali, A., N. Zahid, S. Manickam, Y. Siddiqui, P.G. Alderson, and M. Maqbool. 2014. Induction of lignin and pathogenesis related proteins in dragon fruit plants in response to submicron chitosan dispersions. Crop Protection 63:83-88.

Andreu, L., N. Nuncio-Jáuregui, Á.A. Carbonell-Barrachina, P. Legua, and F. Hernández. 2018. Antioxidant properties and chemical characterization of Spanish Opuntia ficus-indica Mill. cladodes and fruits. J. Sci. Food Agr. 98:1566-1573.

Barbera, G., F. Carimi, P. Inglese, and M. Panno. 1992. Physical, morphological and chemical changes during fruit development and ripening in three cultivars of prickly pear, Opuntia ficus-indica (L.) Miller. J. Hort. Sci. 67:307-312.

Boerjan, W., R. Vanholme, B. Demedts, K. Morreel, and J. Ralph. 2010. Lignin biosynthesis and structure. Plant Physiol. 153:895-905.

Bostock, R.M. 1989. Perspectives on Wound Healing in Resistance to Pathogens. Annu. Rev. Phytopathol. 27:343-71.

Chuang, M.F., H.F. Ni, H.R. Yang, S.L. Shu, S.Y. Lai, and Y.L. Jiang. 2012. First report of stem canker disease of pitaya (Hylocereus undatus and H. polyrhizus) caused by Neoscytalidium dimidiatum in Taiwan. Plant Dis. 96(6):906-907.

Crous1, P.W., B. Slippers, M.J. Wingfield, J. Rheeder, W.F.O. Marasas, A.J.L. Philips, A. Alves, T. Burgess, P. Barber, and J.Z. Groenewald. 2006. Phylogenetic lineages in the Botryosphaeriaceae. Studies Mycol. 55:235-253.

Dag, A., and Y. Mizrahi. 2005. Effect of pollination method on fruit set and fruit characteristics in the vine cactus Selenicereus megalanthus (“yellow pitaya”). J. Hort. Sci. Biotechnol. 80(5):618-622.
Dixon, R.A. 2001. Natural products and plant disease resistance. Nature 411:843-847.

Etienne, A., M. Génard, P. Lobit, D. Mbeguié-A-Mbéguié, and C. Bugaud. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. of Exp. Bot. 64(6):1451-1469.

Fullerton, R.A., P.A. Sutherland, R.S. Rebstock, N.T. Hieu, N.N.A. Thu, D.T. Linh, N.T.K. Thanh, and N.V. Hoa. 2018. The life cycle of dragon fruit canker caused by Neoscytalidium Dimidiatum and implications for control. Dragon Fruit Regional Network Initiation Wkshp. p. 71-80.

Garcia, C.V., S.Y. Quek, R.J. Stevenson, and R.A. Winz. 2012. Characterisation of bound volatile compounds of a low flavour kiwifruit species: Actinidia eriantha. Food Chem. 134:655-661.

Geoghegan, I., G. Steinberg, and S. Gurr. 2017. The role of the fungal cell wall in the infection of plants. Trends Microbiol. 25:957-967.

Hamid, M., and K, Rehman. 2009. Potential applications of peroxidases. Food Chem. 115:1177-1186.

Hu, M., Y. Zhu, G. Liu, Z. Gao, M. Li, Z. Su, and Z. Zhang. 2019. Inhibition on anthracnose and induction of defense response by nitric oxide in pitaya fruit. Scientia Hort. 245:224-230.

Hua, Q., C. Chen, N.T. Zur, H. Wang, J. Wu, J. Chen, Z. Zhang, J. Zhao, G. Hu, and Y. Qin. 2018. Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiol. Biochem. 126:117-125.

Huang, S.K., N. Tangthirasunun, A.J.L. Phillips, D.Q. Dai, D.N. Wanasinghe, T.C. Wen1, A.H. Bahkali, K.D. Hyde, and J. Kang. 2016. Morphology and Phylogeny of Neoscytalidium orchidacearum sp. nov.(Botryosphaeriaceae). Mycobiology 44(2):79-84.
Johnson, L. B. and B. A. Cunningham. 1972. Peroxidase activity in healthy and leaf-rust-infected wheat leaves. Phytochemistry 11(2):547-551.
Kim, Y.H., C.Y. Kim, W.K. Song, D.S. Park, S.Y. Kwon, H.S. Lee, J.W. Bang, and S.S. Kwak. 2008. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867-881.

Koch, K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Corr. Opin. Plant Biol. 7:235-246.

Kushalappa, A.C., K.N. Yogendra, and S. Karre. 2016. Plant innate immune response: qualitative and quantitative resistance. Critical Rev. Plant Sci. 35(1):38-55.

Le Bellect, F, F. Vaillant, and E. Imbert. 2006. Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future. Fruits. 61(4)237-250.

Liu, Q., L. Luo, and L. Zheng. 2018. Lignins: biosynthesis and biological functions in plants. Intl. J. Mol. Sci. 19:335.

Magwaza, L.S., and U.L. Opara. 2015. Analytical methods for determination of sugars and sweetness of horticultural products - A review. Scientia Hort. 184:179-192.

Malinovsky, F.G., J.U. Fangel, and W.G.T. Willats. 2014. The role of the cell wall in plant immunity. Frontiers Plant Sci. 5:1-12.

Marques, J.P.R., J.W. Hoy, B.A. Glória, A.F.G. Viveros, M.L.C. Vieira, and N. Baisakh. 2018. Sugarcane cell wall-associated defense responses to infection by Sporisorium scitamineum. Frontiers Plant Sci. 9:1-14.

Matern, U. and R. Kneusel. 1988. Phenolic compounds in plant disease resistance. Phytoparasitica. 16(2):153-170.

Mello, J.E., A.C. Brito, C.M.S. Motta, J.C.B.Vieira, S.J.Michereff, and A.R. Machado. 2019. First report of Neoscytalidium dimidiatum causing root rot in sweet potato in Brazil. Plamt Dis. 103(2):373-374.

Meng, L.S., M.K. Xu, W. Wan, F. Yu, C. Li, J.Y. Wang, Z.Q. Wei, M.J. Lv, X.Y. Cao, Z.Y. Li, and J.H. Jiang. 2018. Sucrose signaling regulates anthocyanin biosynthesis through a MAPK cascade in Arabidopsis thaliana. Genet. 210:607-619.
Mitchell, H.J., S.A. Hall, R. Stratford, J.L. Hall, and M.S. Barber. 1999. Differential induction of cinnamyl alcohol dehydrogenase during defensive lignification in wheat (Triticum aestivum L.): characterisation of the major inducible form. Planta 208:31-37.

Mizrahi, Y. 2014. Vine-cacti pitayas-the new crops of the world. Revista Brasileira Fruticultura 36(1):124-138.

Nerd, A., F. Gutman, and Y. Mizrahi. 1999. Ripening and postharvest behaviour of fruits of two Hylocereus species (Cactaceae). Postharvest Biol. Technol. 17:39-45.

Nerd, A., and Y. Mizrahi. 1997. Reproductive biology of cactus fruit crop. Hort. Rev. 18: 321-346.

Nomura, K., M. Ide, and Y. Yonemoto. 2005. Changes in sugars and acids in pitaya (Hylocereus undatus) fruit during development. J. Hortic. Sci. Biotechnol. 80(6):711-715.

Novoa, A., J.J.L. Roux, M.P. Robertson, J.R.U. Wilson, and D.M. Richardson. 2014. Introduced and invasive cactus species: a global review. AAoB Plants. 7:plu078.

Obenland, D., M. Cantwell, R. Lobo, S. Collin, J. Sievert, and M.L. Arpaia. 2016. Impact of storage conditions and variety on quality attributes and aroma volatiles of pitahaya(Hylocereus spp.). Scientia Hort. 199:15-22.

Pavlic, D., M.J. Wingfield, P. Barber, B. Slippers, G.E.S.J. Hardy, and T.I. Burgess. 2008. Seven new species of the Botryosphaeriaceae from baobab and other native trees in Western Australia. Mycologia 100(6):861-866.

Polizzi, G., D. Aiello, and A. Vital. 2009. First report of shootblight, canker, and gummosis caused by Neoscytalidium dimidiatum on citrus in Italy. Plant Dis. 93:1215.

Quiroga, M., C. Guerrero, M.A. Botella, A. Barcelo ́, I. Amaya, M.I. Medina, F.J. Alonso, S.M Forchetti, H. Tigier, and V. Valpuesta. 2000. A tomato peroxidase involved in the snthesis of lignin and suberin. Plant Physiol. 122:1119-1127.

Raveh, E., A. Nerd, and Y. Mizrahi. 1998. Responses of two hemiepiphytic fruit crop cacti todifferent degrees of shade. Scientia Hort. 73:151-164.

Ray, J.D., T. Burgess, and V.M. Lanoiselet. 2010. First record of Neoscytalidium dimidiatum and N. novaehollandiae on Mangifera indica and N. dimidiatum on Ficus carica in Australia. Australasian Plant Dis. Notes 5:48-50.

Rhee, S.G., K.S. Yang, S.W. Kang, H.A. Woo, and T.S. Chang. 2005. Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxidants Redox Signaling 7:619-626.

Romanazzi, G., S.M. Sanzani, Y. Bi, S. Tian, P.G. Martínez, and N. Alkan. 2016. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Technol. 122:82-94.

Stintzing, F.C., A. Schieber, and R. Carle. 2002. Betacyanins in fruits from red-purple pitaya, Hylocereus polyrhizus(Weber) Britton & Rose. Food Chem. 77:101-106.

Stintzing, F.C., A. Schieber, and R. Carle. 2003. Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Res. Technol. 216:303-311.

Shadle, G.L., S.V. Wesley, K.L. Korth, F. Chen, C. Lamb, and R.A. Dixon. 2003. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l-phenylalanine ammonia-lyase. Phytochem. 64:153-161.

Subandi, M., E. Mustari, and A. Setian. 2018. The crossing effect of dragon fruit plant caltivars [Hylocereus sp.] on yield. Intl. J. Eng. Technol. 7:762-765.
Surveswaran, S., Y.Z. Cai, H. Corke, and M. Sun. 2007. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem.102:938-953.

Tanaka, Y., N. Sasaki, and A. Ohmiya. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54:733-749.

Türkölmez, Ş., S. Derviş, O. Çiftçi, Ç.U. Serçe, and M. Dikilitas. 2019. New disease caused by Neoscytalidium dimidiatum devastates tomatoes (Solanum lycopersicum) in Turkey. Crop Protection118:21-31.

Umesha, S. 2006. Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica 34(1):68-71.

Vanholme, R., B. Demedts, K. Morreel, J. Ralph, and W. Boerjan. 2010. Lignin biosynthesis and structure. Plant Physiol. 153:895-905.

Vilaplana, R., D. Paez, and S. Valencia-Chamorro. 2017. Control of black rot caused by Alternaria alternata in yellow pitahaya (Selenicereus megalanthus) through hot water dips. LWT-Food Sci. Technol. 82:162-169.

Welinder, K.G. 1992. Superfamily of plant, fungal and bacterial peroxidases. Current Opinion Structural Biol. 2:388-393.

Williams, A., D. Ryan, A.O. Guasca, P. Marriott, and E. Pang. 2005. Analysis of strawberry volatiles using comprehensive two-dimensional gas chromatography with headspace solid-phase microextraction. J. Chromatography B 817:97-107.

Wright, E.R., M.C. Rivera, A. Ghirlanda, and G.A. Lori. 2007. Basal rot of Hylocereus undatus caused by Fusarium oxysporum in Buenos Aires, Argentina. Plant Dis. 91:323.

Wu, Q., Z. Zhang, H. Zhu, T. Li, X. Zhu, H. Gao, Z. Yun, and Y. Jiang. 2019. Comparative volatile compounds and primary metabolites profiling of pitaya fruit peel after ozone treatment. J. Sci. Food Agr. 99:2610-2621.

Wybraniec, S. and Y. Mizrahi. 2002. Fruit flesh betacyanin pigments in Hylocereus Cacti. J. Agricultural Food Chem. 50:6086-6089.
Yilmaz, E. 2001. The chemistry of fresh tomato flavor. Turkish J. Agr. 25:149-155.

Zhou, Y., J. M. Dahler, S. J. R. Undrhill, and R. B. H. Wills. 2003. Enzymes associated with blackheart development in pineapple fruit. Food Chem. 80(4):565-572.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊