跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭啟宏
研究生(外文):Cheng, Chi-Hung
論文名稱:結合四面體網格之牙齒矯正臉部變形模擬
論文名稱(外文):Facial Deformation Simulation with Tetrahedron Mesh in Orthodontic Treatment
指導教授:姚宏宗姚宏宗引用關係
指導教授(外文):Yau, Hong-Tzong
口試委員:莊勝雄林榮信劉興民
口試委員(外文):Chuang, Sheng-HsiungLin, Rong-SinLiu, Shing-Min
口試日期:2011-07-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:113
中文關鍵詞:變形模擬牙齒矯正四面體網格質量彈簧系統
外文關鍵詞:dental simulationorthodontic correctiontetrahedron meshmass spring system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:568
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的為開發一套整合四面體網格變形技術之虛擬矯正模擬系統,藉由整合影像人臉貼圖與矯正規劃流程,達到矯正過程中預測人臉外表變化的效果。傳統牙齒矯正中,若欲讓患者了解手術前後之外觀變化,僅能透過簡單的繪圖法表示,效果欠缺真實;近年來雖有以電腦演算進行臉部變形模擬的研究,但均以2D平面方式作顯示,而無法得知整體外貌之變化。
本研究提出一套針對牙齒矯正前後人臉差異之3D即時臉部變形模擬技術,不僅使患者可清晰了解牙齒矯正後之外觀變化,也能作為牙醫師術前規劃之參考。
首先透過完整頭部之CT掃描資料建立出實體模型,並於編修過程中,分別建立出皮膚、軟組織、骨頭等部分,接著在模型表面進行貼圖,讓臉部模型能呈現栩栩如生之外觀;其後加入數位牙齒模型及矯正矩陣,藉由矩陣之轉換即可得知矯正過程中牙齒位置之變化。
接著將軟組織設定為四面體網格,並建立質量彈簧系統,藉此模擬出真實軟組織之變化情形,如此便能透過牙齒移動來帶動臉部外觀變化,達到牙齒矯正後外觀之變化模擬。

The purpose of this thesis is to develop a surgical simulation system applied to orthodontic treatment with tetrahedron mesh. In the traditional process of orthodontic treatment, drafting is the most usual way to make patients understand the differences of appearances before and after operations. However, for the patients, the simulation is not real enough. Recently, there are some of the simulations with computer calculation to do the researches about face deformation simulation, but they can only be presented in 2D and the changes of the whole appearance are still unable to know.
In this research, a 3D deformation simulation technology of the difference before and after orthodontic treatment in human face is developed. The patients can know the changes of appearances in the process of orthodontics via the technology developed in this research. Furthermore, this technology can also provide guidance for dentists before operation.
In this research, a solid model is established from CT files of the brain model. In the process of model creation, the skin, soft tissue, and bones are established. And then we post face photo in the appearance of model to make it become more real. After this process, the digital teeth model and orthodontics matrix are also added. Through the changes of matrix, the changes of teeth position in the process of orthodontic correction can be realized.
Next, we use tetrahedron mesh model to represent the soft tissue and establish a mass spring system to simulate the deformation of soft tissue. Through the deformation, the teeth movement can bring the transformation of human appearance to achieve the simulation of the appearance prediction after the orthodontic correction.

摘要 II
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 研究目的 5
1.4 文獻回顧 6
1.4.1 網格處理 6
1.4.2 變形 10
1.4.2.1 自由造型變形(Free-Form Deformation) 10
1.4.2.2 質量彈簧系統(Mass Spring System) 11
1.4.2.3 有限元素方法(Finite Element Method) 13
1.4.3 貼圖 15
1.4.4 手術模擬 17
1.4.5 材料參數設定 19
1.5 研究方法 22
第二章 網格建立 24
2.1 網格介紹 24
2.2 網格建立演算法 25
2.2.1 平面直線圖(Planar Straight Line Graph) 25
2.2.2 分段連續線性組合(Piecewise Linear Complex) 25
2.2.3 狄勞尼三角化(Delaunay Triangulation) 26
2.2.4 狄勞尼四面體化(Delaunay tetrahedrization) 28
2.2.4.1 Conforming Delaunay Triangulation 29
2.2.4.2 Constrained Conforming Delaunay Triangulation 30
2.3 網格細分 38
第三章 實體成像 43
3.1 資料格式 44
3.2 實體成像軟體 46
3.2.1 實體模型萃取 47
3.2.2 實體模型後處理 49
3.3 人臉貼圖 52
3.4 矯正排牙規劃 58
第四章 質量彈簧系統 61
4.1 質量彈簧系統介紹 61
4.2 Newmark Method 67
4.3 共軛梯度法(Conjugate gradient method) 70
4.4 碰撞偵測 72
第五章 虛擬矯正模擬成果 76
5.1 虛擬矯正模型建立 76
5.2 MSS變形成果 79
5.3 ANSYS變形成果 85
5.4 MSS和ANSYS變形成果比較 90
第六章 結論與未來展望 92
6.1 結論 92
6.2 未來展望 94


[1]D. C. Steiner, E. C. DeVerdière, and M. Yvinec, “Conforming Delaunay triangulation in 3D,” In 18th Annual Symposium on Computational Geometry, pp. 237-246, 2002.
[2]M. Murphy, D. M. Mount, and C. W. Gable, “A point-placement strategy for conforming Delaunay tetrahedralizations,” In 11th Annual ACM-SIAM symposium on Discrete algorithms, pp. 67-74, 2000.
[3]P. Pébay, and P. J. Frey, “A priori Delaunay – conformity,” In 7th International Meshing Roundtable, pp. 321-333, 1998.
[4]J. R. Shewchuk, “Constrained Delaunay tetrahedralization and provably good boundary recovery,” In 11th International Meshing Roundtable, pp.193-204, 2002.
[5]H. Si, and K. Gartner, “Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations,” In 14th International Meshing Roundtable, pp.147-163, 2005.
[6]H. Si, “Constrained Delaunay tetrahedral mesh generation and refinement,” Finite Elements in Analysis and Design, pp. 33-46, 2009.
[7]L. P. Chew, “Guaranteed-quality triangular meshes,” Department of Computer Science Technical Report TR 89–983, Cornell University, 1989.
[8]L. P. Chew, “Guaranteed-quality mesh generation for curved surfaces,” In 9th Annual symposium on Computational geometry, pp. 274-280, 1993.
[9]J. Ruppert, “A Delaunay refinement algorithm for quality 2 - dimensional mesh generation,” Journal of algorithms, pp. 548-585, 1995.
[10]J. Shewchuk, “Delaunay refinement mesh generation,” Department of Computer Science, Carnegie Mellon University, 1997.
[11]J. Shewchuk, “Delaunay refinement algorithms for triangular mesh generation,” Computational Geometry: Theory and Applications, pp. 21-74, 2002.
[12]D. Rypl, and Z. Bittnar, “Direct triangulation of 3D surfaces using the advancing front technique,” Numerical Methods in Engineering, pp. 86-99, 1996.
[13]J. Schoberl, “NETGEN: An advancing front 2D/3D-mesh generator based on abstract rules,” Computing and Visualization in Science Springer-Verlag, pp. 41-52, 1997.
[14]P. L. George, and E. Seveno, “The advancing-front mesh generation method revisited,” International Journal for Numerical Methods in Engineering, pp. 3605-3619, 1994.
[15]M. Yerry, and M. S. Shephard, “Automatic three-dimensional mesh generation by the modified-octree technique,” International Journal for Numerical Methods in Engineering, pp. 1965-1990, 2005.
[16]S. J. Owen, “A survey of unstructured mesh generation technology,” In 7th International Meshing Roundtable, pp. 239-267, 1998.
[17]K. M. Okstad, and K. M. Mathisen, “Towards automatic adaptive geometrically non-linear shell analysis. Part I: Implementation of an h-adaptive mesh refinement procedure,” International Journal for Numerical Methods in Engineering, pp. 2657-2678, 1994.
[18]D. Azocar, M. Elgueta , and M. C. Rivara , “Automatic LEFM crack propagation method based on local Lepp- Delaunay mesh refinement,” Advances in Engineering Software, pp. 111-119, 2010.
[19]M. C. Rivara, and N. Hitschfeld, “LEPP-Delaunay algorithm: a robust tool for producing size-optimal quality triangulations,” In 8th International Meshing Roundtable, pp.205-220,1999.
[20]T. W. Sederberg, and S. R. Parry, “Free form deformations of solid geometric models,” Computer Graphics, pp. 151-160, 1986.
[21]B. Liu, and N. Shangguan, “Constrained free form deformation driven by sectional outline curve,” International Symposium on Computational Intelligence and Design, pp. 283-286, 2008.
[22]R. MacCracken, and K. I. Joy, “Free-form deformations with lattices of arbitrary topology,” Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 181-188, 1996.
[23]L. P. Nedel, and D. Thalmann, “Real time muscle deformations using mass-spring systems,” Computer Graphics International, pp.156, 1998.
[24]Y. M. Tang, and K. C. Hui, “Simulating tendon motion with axial mass–spring system,” Computers & Graphics, pp. 162-172, 2009.
[25]K. Ka ̈hler, J. Haber, and H. P. Seidel, “Geometry-based Muscle Modeling for Facial Animation,” Graphics Interface, pp.27-36, 2001.
[26]M. Teschner, S. Girod, and B. Girod, “Optimization approaches for soft–tissue prediction in craniofacial surgery simulation,” Medical Image Computing and Computer-Assisted Intervention, pp. 1183-1190, 1999.
[27]R. M. Koch, S. H. M. Roth, M. H. Gross, A. P. Zimmermann, and H. F. Sailer, “A Framework for Facial Surgery Simulation,” Proceedings of the 18th spring conference on Computer graphics, pp.33-42, 2002.
[28]M. Chabanas, and Y. Payan, “A 3D finite element model of the human face for simulation in plastic and maxillo-facial surgery,” Medical Image Computing and Computer-Assisted Intervention, pp.145-152, 2000.
[29]G. Sela, J. Subaga, A. Lindblad, D. Albocher, S. Schein, and G. Elber, “Real-time haptic incision simulation using FEM-based discontinuous free-form deformation,” Computer-Aided Design, pp. 685-693, 2007.
[30]S. Wang, J. Yang, and J. C. Gee, “Advances in collision detection and non-linear finite mixed element modelling for improved soft tissue simulation in craniomaxillofacial surgical planning,” The International Journal of Medical Robotics and Computer Assisted Surgery, pp. 28-41, 2010.
[31]F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H. Salesin, “Synthesizing Realistic Facial Expressions from Photographs,” ACM SIGGRAPH, pp.75-84, 1998.
[32]A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Calculus of Nonrigid Surfaces for Geometry and Texture Manipulation,” IEEE Transactions on Visualization and Computer Graphics, pp. 902-913, 2007.
[33]X. C. He, S. C. Yuk, K. P. Chow, K. Y. K. Wong, and R. H. Y. Chung, “Automatic 3D Face Texture Mapping Framework from Single Image,” International Conference on Internet Multimedia Computing and Service, pp. 123-128, 2009.
[34]V. Blanz, and T. Vetter, “A Morphable Model For The Synthesis Of 3D Faces,” Computer graphics and interactive techniques, pp.187-194, 1999.
[35]G. S. Vicente, C. Buchart, D. Borro, and J.T. Celigüeta, “Maxillofacial surgery simulation using a mass-spring model derived from continuum and the scaled displacement method,” International Journal of Computer Assisted Radiology and Surgery, pp. 89-98, 2008.
[36]S. Meller, E. Nkenke, and W. A. Kalender, “Statistical face models for the prediction of soft-tissue deformations after orthognathic osteotomies,” Medical Image Computing and Computer-Assisted Intervention, pp. 443-450, 2005.
[37]C. Holberg, A. K. Heine, P. Geis, K. Schwenzer, and I. R. Janson, “Three-Dimensional Soft Tissue Prediction Using Finite Elements,” Journal of Orofacial Orthopedics, pp. 122-134, 2004.
[38]L. Beldie, B. Walker, Y. Lu, S. Richmond, and J. Middleton, “Finite element modelling of maxillofacial surgery and facial expressions – a preliminary study,” The International Journal of Medical Robotics and Computer Assisted Surgery, pp. 422-430, 2010.
[39]S. H. Liao, R. F. Tong, J. P. Geng, and M. Tang, “Inhomogeneous volumetric Laplacian deformation for rhinoplasty planning and simulation system,” COMPUTER ANIMATION AND VIRTUAL WORLDS, pp.331-341, 2010.
[40]B. A. Lloyd, G. Sze ́kely, and M. Harders, “Identification of Spring Parameters for Deformable Object Simulation,” IEEE Transactions on Visualization and Computer, pp. 1081-1094, 2007.
[41]C. P. Mattei, S. Beca, H. Zahouania, “In vivo measurements of the elastic mechanical properties of human skin by indentation tests,” Medical Engineering & Physics, pp.599-606, 2008.
[42]M. Brown, and D. G. Lowe, “Automatic Panoramic Image Stitching using Invariant Features,” International Journal of Computer Vision, pp. 59-73, 2007.
[43]U. Meier, O. Lopez, C. Monserrat, M. C. Juan, and M. Alcaniz, “Real-time deformable models for surgery simulation: a survey,” Computer Methods and Programs in Biomedicine, pp. 183-197, 2005.
[44]N. M. Newmark, “A method of computation for structural dynamics,” Journal of the Engineering Mechanics Division, pp. 67-94, 1959.
[45]M. Chabanas, Y. Payan, C. Mare ́caux, P. Swider, and F. Boutault, “Comparison of Linear and Non-linear Soft Tissue Models with Post-operative CT Scan in Maxillofacial Surgery,” Lecture Notes in Computer Science, 2004, pp. 19-27.
[46]L. R. Dermaut, and A. A. De Smit, “Effects of sagittal split advancement osteotomy on facial profiles,” European Journal of Orthodontics, pp. 366-374, 1989.
[47]J. Barbic ̌, and D. James, “Real-Time Subspace Integration for St.Venant-Kirchhoff Deformable Models,” ACM SIGGRAPH, pp. 982-990, 2005.
[48]W. M. Pang, J. Qin, Y. P Chui and P. A Heng, “Fast Prototyping of Virtual Reality Based Surgical Simulators with PhysX-enabled GPU,” Transactions on Edutainment IV, pp. 176-188, 2010.
[49]P. Fleischmann, “Mesh generation for technology CAD in three dimensions,” Technical University, 2000.
[50]ANSYS Ver.12.1: ANSYS HELP.
[51]Dolphin . [Online]. Available: http://www.dolphinimaging.com/imaging/IMAGING_PLUS.PDF
[52]Hounsfield scale. [Online]. Available: http://en.wikipedia.org/wiki/Hounsfield_scale
[53]Visualization and Interactive Media Laboratory of NCHC. [Online]. Available: http://viml.nchc.org.tw/home/
[54]Ircad. [Online]. Available: http://www.ircad.fr/softwares/vr-render/Software.php
[55]Amira. [Online]. Available: http://www.amiravis.com
[56]Materialise. [Online]. Available: http://www.materialise.com/
[57]TDS. [Online]. Available: http://www.tdsbiotech.com.tw/
[58]3D-DOCTOR. [Online]. Available: http://www.ablesw.com/3d-doctor/
[59]Mass Spring Damper. [Online]. Available: http://commons.wikimedia.org/wiki/File:Mass-Spring-Damper_%282_body_system%29.svg
[60]Newmark Method. [Online]. Available: http://opensees.berkeley.edu/wiki/index.php/Newmark_Method
[61]k-d tree. [Online]. Available: http://en.wikipedia.org/wiki/K-d_tree
[62]Least squares. [Online]. Available: http://en.wikipedia.org/wiki/Least_squares
[63]盧建勳, “電腦模擬顏面整形手術術後臉型之準確性及在不修改模擬軟體情況下增加模擬準確度”, 台北醫學大學, 2003.
[64]陳冠宇, “結合力回饋觸感機構之虛擬牙齒矯正系統”, 國立中正大學, 2007。
[65]馬里伯 (Marieb, Elaine N.), 人體解剖學, 臺灣培生教育出版, 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top