|
[1]D. C. Steiner, E. C. DeVerdière, and M. Yvinec, “Conforming Delaunay triangulation in 3D,” In 18th Annual Symposium on Computational Geometry, pp. 237-246, 2002. [2]M. Murphy, D. M. Mount, and C. W. Gable, “A point-placement strategy for conforming Delaunay tetrahedralizations,” In 11th Annual ACM-SIAM symposium on Discrete algorithms, pp. 67-74, 2000. [3]P. Pébay, and P. J. Frey, “A priori Delaunay – conformity,” In 7th International Meshing Roundtable, pp. 321-333, 1998. [4]J. R. Shewchuk, “Constrained Delaunay tetrahedralization and provably good boundary recovery,” In 11th International Meshing Roundtable, pp.193-204, 2002. [5]H. Si, and K. Gartner, “Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations,” In 14th International Meshing Roundtable, pp.147-163, 2005. [6]H. Si, “Constrained Delaunay tetrahedral mesh generation and refinement,” Finite Elements in Analysis and Design, pp. 33-46, 2009. [7]L. P. Chew, “Guaranteed-quality triangular meshes,” Department of Computer Science Technical Report TR 89–983, Cornell University, 1989. [8]L. P. Chew, “Guaranteed-quality mesh generation for curved surfaces,” In 9th Annual symposium on Computational geometry, pp. 274-280, 1993. [9]J. Ruppert, “A Delaunay refinement algorithm for quality 2 - dimensional mesh generation,” Journal of algorithms, pp. 548-585, 1995. [10]J. Shewchuk, “Delaunay refinement mesh generation,” Department of Computer Science, Carnegie Mellon University, 1997. [11]J. Shewchuk, “Delaunay refinement algorithms for triangular mesh generation,” Computational Geometry: Theory and Applications, pp. 21-74, 2002. [12]D. Rypl, and Z. Bittnar, “Direct triangulation of 3D surfaces using the advancing front technique,” Numerical Methods in Engineering, pp. 86-99, 1996. [13]J. Schoberl, “NETGEN: An advancing front 2D/3D-mesh generator based on abstract rules,” Computing and Visualization in Science Springer-Verlag, pp. 41-52, 1997. [14]P. L. George, and E. Seveno, “The advancing-front mesh generation method revisited,” International Journal for Numerical Methods in Engineering, pp. 3605-3619, 1994. [15]M. Yerry, and M. S. Shephard, “Automatic three-dimensional mesh generation by the modified-octree technique,” International Journal for Numerical Methods in Engineering, pp. 1965-1990, 2005. [16]S. J. Owen, “A survey of unstructured mesh generation technology,” In 7th International Meshing Roundtable, pp. 239-267, 1998. [17]K. M. Okstad, and K. M. Mathisen, “Towards automatic adaptive geometrically non-linear shell analysis. Part I: Implementation of an h-adaptive mesh refinement procedure,” International Journal for Numerical Methods in Engineering, pp. 2657-2678, 1994. [18]D. Azocar, M. Elgueta , and M. C. Rivara , “Automatic LEFM crack propagation method based on local Lepp- Delaunay mesh refinement,” Advances in Engineering Software, pp. 111-119, 2010. [19]M. C. Rivara, and N. Hitschfeld, “LEPP-Delaunay algorithm: a robust tool for producing size-optimal quality triangulations,” In 8th International Meshing Roundtable, pp.205-220,1999. [20]T. W. Sederberg, and S. R. Parry, “Free form deformations of solid geometric models,” Computer Graphics, pp. 151-160, 1986. [21]B. Liu, and N. Shangguan, “Constrained free form deformation driven by sectional outline curve,” International Symposium on Computational Intelligence and Design, pp. 283-286, 2008. [22]R. MacCracken, and K. I. Joy, “Free-form deformations with lattices of arbitrary topology,” Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 181-188, 1996. [23]L. P. Nedel, and D. Thalmann, “Real time muscle deformations using mass-spring systems,” Computer Graphics International, pp.156, 1998. [24]Y. M. Tang, and K. C. Hui, “Simulating tendon motion with axial mass–spring system,” Computers & Graphics, pp. 162-172, 2009. [25]K. Ka ̈hler, J. Haber, and H. P. Seidel, “Geometry-based Muscle Modeling for Facial Animation,” Graphics Interface, pp.27-36, 2001. [26]M. Teschner, S. Girod, and B. Girod, “Optimization approaches for soft–tissue prediction in craniofacial surgery simulation,” Medical Image Computing and Computer-Assisted Intervention, pp. 1183-1190, 1999. [27]R. M. Koch, S. H. M. Roth, M. H. Gross, A. P. Zimmermann, and H. F. Sailer, “A Framework for Facial Surgery Simulation,” Proceedings of the 18th spring conference on Computer graphics, pp.33-42, 2002. [28]M. Chabanas, and Y. Payan, “A 3D finite element model of the human face for simulation in plastic and maxillo-facial surgery,” Medical Image Computing and Computer-Assisted Intervention, pp.145-152, 2000. [29]G. Sela, J. Subaga, A. Lindblad, D. Albocher, S. Schein, and G. Elber, “Real-time haptic incision simulation using FEM-based discontinuous free-form deformation,” Computer-Aided Design, pp. 685-693, 2007. [30]S. Wang, J. Yang, and J. C. Gee, “Advances in collision detection and non-linear finite mixed element modelling for improved soft tissue simulation in craniomaxillofacial surgical planning,” The International Journal of Medical Robotics and Computer Assisted Surgery, pp. 28-41, 2010. [31]F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H. Salesin, “Synthesizing Realistic Facial Expressions from Photographs,” ACM SIGGRAPH, pp.75-84, 1998. [32]A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Calculus of Nonrigid Surfaces for Geometry and Texture Manipulation,” IEEE Transactions on Visualization and Computer Graphics, pp. 902-913, 2007. [33]X. C. He, S. C. Yuk, K. P. Chow, K. Y. K. Wong, and R. H. Y. Chung, “Automatic 3D Face Texture Mapping Framework from Single Image,” International Conference on Internet Multimedia Computing and Service, pp. 123-128, 2009. [34]V. Blanz, and T. Vetter, “A Morphable Model For The Synthesis Of 3D Faces,” Computer graphics and interactive techniques, pp.187-194, 1999. [35]G. S. Vicente, C. Buchart, D. Borro, and J.T. Celigüeta, “Maxillofacial surgery simulation using a mass-spring model derived from continuum and the scaled displacement method,” International Journal of Computer Assisted Radiology and Surgery, pp. 89-98, 2008. [36]S. Meller, E. Nkenke, and W. A. Kalender, “Statistical face models for the prediction of soft-tissue deformations after orthognathic osteotomies,” Medical Image Computing and Computer-Assisted Intervention, pp. 443-450, 2005. [37]C. Holberg, A. K. Heine, P. Geis, K. Schwenzer, and I. R. Janson, “Three-Dimensional Soft Tissue Prediction Using Finite Elements,” Journal of Orofacial Orthopedics, pp. 122-134, 2004. [38]L. Beldie, B. Walker, Y. Lu, S. Richmond, and J. Middleton, “Finite element modelling of maxillofacial surgery and facial expressions – a preliminary study,” The International Journal of Medical Robotics and Computer Assisted Surgery, pp. 422-430, 2010. [39]S. H. Liao, R. F. Tong, J. P. Geng, and M. Tang, “Inhomogeneous volumetric Laplacian deformation for rhinoplasty planning and simulation system,” COMPUTER ANIMATION AND VIRTUAL WORLDS, pp.331-341, 2010. [40]B. A. Lloyd, G. Sze ́kely, and M. Harders, “Identification of Spring Parameters for Deformable Object Simulation,” IEEE Transactions on Visualization and Computer, pp. 1081-1094, 2007. [41]C. P. Mattei, S. Beca, H. Zahouania, “In vivo measurements of the elastic mechanical properties of human skin by indentation tests,” Medical Engineering & Physics, pp.599-606, 2008. [42]M. Brown, and D. G. Lowe, “Automatic Panoramic Image Stitching using Invariant Features,” International Journal of Computer Vision, pp. 59-73, 2007. [43]U. Meier, O. Lopez, C. Monserrat, M. C. Juan, and M. Alcaniz, “Real-time deformable models for surgery simulation: a survey,” Computer Methods and Programs in Biomedicine, pp. 183-197, 2005. [44]N. M. Newmark, “A method of computation for structural dynamics,” Journal of the Engineering Mechanics Division, pp. 67-94, 1959. [45]M. Chabanas, Y. Payan, C. Mare ́caux, P. Swider, and F. Boutault, “Comparison of Linear and Non-linear Soft Tissue Models with Post-operative CT Scan in Maxillofacial Surgery,” Lecture Notes in Computer Science, 2004, pp. 19-27. [46]L. R. Dermaut, and A. A. De Smit, “Effects of sagittal split advancement osteotomy on facial profiles,” European Journal of Orthodontics, pp. 366-374, 1989. [47]J. Barbic ̌, and D. James, “Real-Time Subspace Integration for St.Venant-Kirchhoff Deformable Models,” ACM SIGGRAPH, pp. 982-990, 2005. [48]W. M. Pang, J. Qin, Y. P Chui and P. A Heng, “Fast Prototyping of Virtual Reality Based Surgical Simulators with PhysX-enabled GPU,” Transactions on Edutainment IV, pp. 176-188, 2010. [49]P. Fleischmann, “Mesh generation for technology CAD in three dimensions,” Technical University, 2000. [50]ANSYS Ver.12.1: ANSYS HELP. [51]Dolphin . [Online]. Available: http://www.dolphinimaging.com/imaging/IMAGING_PLUS.PDF [52]Hounsfield scale. [Online]. Available: http://en.wikipedia.org/wiki/Hounsfield_scale [53]Visualization and Interactive Media Laboratory of NCHC. [Online]. Available: http://viml.nchc.org.tw/home/ [54]Ircad. [Online]. Available: http://www.ircad.fr/softwares/vr-render/Software.php [55]Amira. [Online]. Available: http://www.amiravis.com [56]Materialise. [Online]. Available: http://www.materialise.com/ [57]TDS. [Online]. Available: http://www.tdsbiotech.com.tw/ [58]3D-DOCTOR. [Online]. Available: http://www.ablesw.com/3d-doctor/ [59]Mass Spring Damper. [Online]. Available: http://commons.wikimedia.org/wiki/File:Mass-Spring-Damper_%282_body_system%29.svg [60]Newmark Method. [Online]. Available: http://opensees.berkeley.edu/wiki/index.php/Newmark_Method [61]k-d tree. [Online]. Available: http://en.wikipedia.org/wiki/K-d_tree [62]Least squares. [Online]. Available: http://en.wikipedia.org/wiki/Least_squares [63]盧建勳, “電腦模擬顏面整形手術術後臉型之準確性及在不修改模擬軟體情況下增加模擬準確度”, 台北醫學大學, 2003. [64]陳冠宇, “結合力回饋觸感機構之虛擬牙齒矯正系統”, 國立中正大學, 2007。 [65]馬里伯 (Marieb, Elaine N.), 人體解剖學, 臺灣培生教育出版, 2006.
|