跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:Anak Agung Sagung Dewi Afiati Kencana
研究生(外文):Anak Agung Sagung Dewi Afiati
論文名稱:常壓電漿系統驅動金屬氧化物成形之研究
論文名稱(外文):The Roles of Atmospheric Pressure Plasma System Driven on the Formation of Metal Oxide
指導教授:郭俞麟郭俞麟引用關係
指導教授(外文):Yu-Lin Kuo
口試委員:高振宏顏怡文陳炤彰張復瑜Eckart Schellkes劉志宏黃駿
口試委員(外文):C. Robert KaoYee-Wen YenChao-Chang ChenFuh-Yu ChangEckart SchellkesChih-Hung LiuChun Huang
口試日期:2019-03-28
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:148
中文關鍵詞:Atmospheric pressure plasma systemPlasma headsMetal oxideSOFCsSolder wetting
外文關鍵詞:Atmospheric pressure plasma systemPlasma headsMetal oxideSOFCsSolder wetting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This study shows the high efficiency process of atmospheric pressure (AP) plasma system, regardless the plasma heads: fixed head jet or rotating head, and the gas sources, i.e. oxygen, compressed dry air (CDA, air), or H2O vapour. Short plasma ignition time and relatively low plasma torch temperature are reported.
In this study, two cases are reported: 1) Case I. Oxide layer deposition for fuel cell application, and 2) Reactive oxide species for solder wettability improvement. Fixed head jet is used in Case I and rotating head is applied for Case II. In Case I., the procedures on producing metal oxide powder, and depositing metal oxide thin films using AP-plasma jet are implemented. Nanoparticle size (NPs) of various metal oxides, i.e. zirconia oxide (ZrO2), gadolinia-doped ceria (10GDC), lanthanum strontium manganese (LSM551), lanthanum strontium cobaltite iron (LSCF6428), silver-ceria oxide (Ag-CeO2) are successfully fabricated on the substrate in a single structure phase without any impurities. Moreover, LSM551, LSCF6428 and Ag-CeO2 are used as the cathode films for solid oxide fuel cells (SOFCs). Low, intermediate and high working temperature of SOFCs are well-fabricated from those cathode films. Electrochemical performance of those SOFCs are presented.
In Case II., AP-plasma introduced by air and H2O vapour gas sources is applied on the copper (Cu) pad with organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG) surface. Bare Cu is also used as the reference. The experimental procedures are described. The aim is not only to understand the function of AP-plasma process, but also to enhance the solder wetting on the substrate via this process, and to discover the solder joints reliability after high temperature storage (HTS) up to 1500 oC. The solder wetting improvement can last for 1 – 4 hrs with H2O vapour plasma performs the best wettability on organic (OSP), while air plasma performs a better wetting on metal (ENIG) surface finish. The mechanism of surface treatment on the effect of various carrier gases is discussed. It is found that cohesive break with ductile mode is majorly occurred. The transformation of IMCs in OSP and ENIG at elevated HTS ageing times after treated by AP-plasma introduced air and H2O vapour gas sources is described.
This study shows the high efficiency process of atmospheric pressure (AP) plasma system, regardless the plasma heads: fixed head jet or rotating head, and the gas sources, i.e. oxygen, compressed dry air (CDA, air), or H2O vapour. Short plasma ignition time and relatively low plasma torch temperature are reported.
In this study, two cases are reported: 1) Case I. Oxide layer deposition for fuel cell application, and 2) Reactive oxide species for solder wettability improvement. Fixed head jet is used in Case I and rotating head is applied for Case II. In Case I., the procedures on producing metal oxide powder, and depositing metal oxide thin films using AP-plasma jet are implemented. Nanoparticle size (NPs) of various metal oxides, i.e. zirconia oxide (ZrO2), gadolinia-doped ceria (10GDC), lanthanum strontium manganese (LSM551), lanthanum strontium cobaltite iron (LSCF6428), silver-ceria oxide (Ag-CeO2) are successfully fabricated on the substrate in a single structure phase without any impurities. Moreover, LSM551, LSCF6428 and Ag-CeO2 are used as the cathode films for solid oxide fuel cells (SOFCs). Low, intermediate and high working temperature of SOFCs are well-fabricated from those cathode films. Electrochemical performance of those SOFCs are presented.
In Case II., AP-plasma introduced by air and H2O vapour gas sources is applied on the copper (Cu) pad with organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG) surface. Bare Cu is also used as the reference. The experimental procedures are described. The aim is not only to understand the function of AP-plasma process, but also to enhance the solder wetting on the substrate via this process, and to discover the solder joints reliability after high temperature storage (HTS) up to 1500 oC. The solder wetting improvement can last for 1 – 4 hrs with H2O vapour plasma performs the best wettability on organic (OSP), while air plasma performs a better wetting on metal (ENIG) surface finish. The mechanism of surface treatment on the effect of various carrier gases is discussed. It is found that cohesive break with ductile mode is majorly occurred. The transformation of IMCs in OSP and ENIG at elevated HTS ageing times after treated by AP-plasma introduced air and H2O vapour gas sources is described.
Cover i
Doctoral Dissertation Recommendation Form ii
Qualification Form by Doctoral Degree Examination Committee iii
Acknowledgment iv
Abstract vi
Table of Contents viii
List of Figures xi
List of Tables xvi
Chapter 1: General Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives and Outline of the Dissertation 2
Chapter 2: Literature Review 4
2.1 Plasma Discovery 4
2.1.1 Journey to the North Pole 5
2.1.2 The Langmuir Probe 7
2.2 Vacuum System 10
2.2.1 Radio Frequency (RF) Magnetron Sputtering 13
2.2.2 Plasma Enhanced Chemical Vapour Deposition (PE-CVD) 17
2.3 Atmospheric Pressure (AP) Plasma 30
2.3.1 Surface Modification 29
2.3.2 Deposition 30
2.3.3 Ion Bombardment 32
Chapter 3: Case Study I. Oxide Layer Deposition for Fuel Cell Application 36
3.1 Introduction 36
3.2 Experimental Procedure 39
3.2.1 Preparation of Unary to Quaternary Metal Oxide, and Two-phase of Metal Oxide Formations 39
3.2.2 Materials and Morphology Analysis 42
3.2.3 Electrochemical Analysis 42
3.3 Results and Discussion 43
3.3.1 Plasma Reactive Species 43
3.3.2 Evolution of Plasma Gas Temperature 45
3.3.3 Materials Characterizations 46
3.3.4 Microstructure Analysis 49
3.3.5 Electrochemical Performance 52
3.4 Summary 58
Chapter 4: Case Study II. Reactive Oxide Species for Solder
Wettability Improvement 60
4.1 Introduction 60
4.2 Experimental Procedure 61
4.2.1 Materials 61
4.2.2 Pre-cleaning Process and Atmospheric Pressure (AP) Plasma Diagnostic 63
4.2.3 Surface Chemical Characterization 66
4.2.4 Surface Energy Measurement 66
4.2.5 Solder Spreading and Reliability Tests 67
4.3 Results and Discussion 68
4.3.1 Atmospheric Pressure (AP) Plasma Diagnostic 68
4.3.2 Spreading Ratio in Difference Staging Time 74
4.3.3 Surface Chemical Composition 76
4.3.4 Proposed Mechanism for Air and H2O Vapour Plasma Treatments 83
4.3.5 Solder Joint Reliability 90
4.4 Summary 105
Chapter 5: Conclusion 108
Chapter 6: Future Work 111
References 112
1. F. Massines, C. Sarra-Bournet, F. Fanelli, N. Naudé, and N, N. Gherardi, Atmospheric pressure low temperature direct plasma technology: status and challenges for thin film deposition. Plasma Process. Polym., 2012. 9(11‐12): p. 1041-1073.
2. J.E. Harry, Introduction to plasma technology. 2010, Weinheim, Germany: Wiley-Vch Verlag & Co. KGa.A.
3. A. Piel, Plasma physics: An introduction to laboratory, space, and fusion plasmas. 2010: Springer-Verlag Berlin Heidelberg.
4. R.A. Wolf, Atmospheric pressure plasma for surface modification. 2013, Hoboken, New Jersey: John Wiley & Sons, Inc.
5. D.A. Frank-Kamenetskii, Plasma: The fourth state of matter. 1972: Springer, Boston, MA.
6. E. Theodossiou and V.N. Manimanis, The cosmology of the pre-Socratic Greek philosophers. Mem. S.A.It. Suppl., 2010. 15: p. 5.
7. <https://www.plasmacoalition.org/publications.html#msg-box3-2>.
8. S. Weinberg, The first three minutes: A modern view of the origin of the universe. 1977: Fontana Paperbacks.
9. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Atmospheric pressure plasmas: A review. Spectrochim. Acta, Part B: Atomic Spectroscopy, 2006. 61(1): p. 2-30.
10. <https://slideplayer.com/slide/8831176/>.
11. K. Birkeland, The Norwegian aurora polaris expedition 1902-1903. Vol. 1. 1908: Christiania, H. Aschelhoug & Co.
12. A. Egeland and W.J. Burke, Kristian Birkeland: The first space scientist. 2005: Springer Netherlands.
13. <http://www.electricyouniverse.com/eye/?level=picture&id=1619>.
14. J. Lilensten, G. Provan, S. Grimald, A. Brekke, E. Fluckiger, P. Vanlommel, C.S. Wedlund, M. Barthélémy, and P. Garnier, The Planeterrella experiment: From individual initiative to networking. Vol. 3. 2012.
15. <https://www.stouchlighting.com/blog/the-historical-evolution-of-lighting>.
16. <http://www.historyoflighting.net/>.
17. L. Graeme, Irving Langmuir and the light bulb. Plasma Sources Sci. Technol., 2009. 18(1): p. 014001.
18. T.A. Edison, Electric lamp, U.S.P. Office, Editor. 1880: United States.
19. I. Langmuir, Incandescent Electric Lamp, U.S.P. Office, Editor. 1916: United States.
20. I. Langmuir and C.G. Suits, The collected works of Irving Langmuir. 1961, New York Mcmillan-Pergamon Press.
21. S. Ghosh, P.K. Chattopadhyay, J. Ghosh, and D. Bora, RF compensation of single Langmuir probe in low density helicon plasma. Fusion Engin. Des., 2016. 112: p. 915-918.
22. Gauter, S., F. Haase, and H. Kersten, Experimentally unraveling the energy flux originating from a DC magnetron sputtering source. Thin Solid Films, 2019. 669: p. 8-18.
23. Gauter, S., M. Fröhlich, and H. Kersten, Direct calorimetric measurements in a PBII and deposition (PBII&D) experiment with a HiPIMS plasma source. Surf. Coat. Technol., 2018. 352: p. 663-670.
24. A. Anders, Width, structure and stability of sheaths in metal plasma immersion ion implantation and deposition: measurements and analytical considerations. Surf. Coat. Technol., 2001. 136(1): p. 85-92.
25. J.C. Lee, K.W. Min, J.W. Ham, J.-J. Lee, and S.K. Hong, Langmuir probe experiments on Korean satellites. Current Appl. Phys., 2013. 13(5): p. 846-849.
26. G. Takyi and N.N. Ekere, Study of the effects of PCB surface finish on plasma process time for lead-free wave soldering. Solder. Surf. Mt. Tech., 2010. 22(2): p. 37-42.
27. R. Salimijazi, H., T. Coyle, and J. Mostaghimi, Vacuum plasma spraying: A new concept for manufacturing Ti6Al4V structures. J. JOM, 2006. 58: p. 50-56.
28. J. Napp, G. Daeschlein, M. Napp, S von Podewils, D. Gümbel, R. Spitzmueller, P. Fornaciari, P. Hinz, M. Jünger, On the history of plasma treatment and comparison of microbiostatic efficacy of a historical high-frequency plasma device with two modern devices. GMS Hyg. Infect. Control, 2015. 10: p. Doc08-Doc08.
29. P. H. Chang, R., C. C. Chang, and S. Darack, Hydrogen plasma etching of semiconductors and their oxides. J. Vac. Sci. Technol., 1982. 20(1): 45-50.
30. J.P. Lebrun, Plasma-assisted processes for surface hardening of stainless steel, in Thermochemical Surface Engineering of Steels. 2015, Woodhead Publishing: Oxford. p. 615-632.
31. B. Marcandalli and C. Riccardi, Plasma treatments of fibres and textiles, in Plasma Technologies for Textiles. 2007, Woodhead Publishing. p. 282-300.
32. J.P. Chu, Vacuum and thin film processing. 2017, National Taiwan University of Science and Technology, Taipei, Taiwan: Department of Materials Science and Engineering, National Taiwan University of Science and Technology.
33. <https://vacaero.com/information-resources/vac-aero-training/1167-high-and-ultra-high-vacuum.html>.
34. Y.-L, Kuo, S.-E. Lin, W.-C. Wei, and Y.-M. Su, Gadolinia-doped ceria films deposited by RF reactive magnetron sputtering. Solid State Ionics, 2009. 180(26–27): p. 1421-1428.
35. Y.-L.Kuo, Y.-S. Chen, and C. Lee, Sputter-deposited 20 mol% gadolinia-doped ceria films on 8 mol% yttria-stabilized zirconia tapes for improved electrochemical performance. Thin Solid Films, 2016. 618A: p. 202-206.
36. Kuo, Y.-L., Y.-S. Chen, and C. Lee, Growth of 20 mol% Gd-doped ceria thin films by RF reactive sputtering: The O2/Ar flow ratio effect. J. Eur. Ceram. Soc., 2011. 31(16): p. 3127-3135.
37. Y.-L. Kuo and S.D. Kencana, Mechanism of oxygen ion diffusion in Gd-doped ceria electrolyte films deposited via reactive and direct sputtering. Surf. Coat. Technol., 2017. 320: p. 47-52.
38. Y.-L. Kuo, J.-J. Huang, S.-T. Lin, C. lee, and W.-H. Lee, Diffusion barrier properties of sputtered TaNx between Cu and Si using TaN as the target. Mater. Chem. Phys., 2003. 80(3): p. 690-695.
39. C. Gerhard, W. Viöl, and S. Wieneke, Plasma-enhanced laser materials processing, in plasma science and technology progress in physical and chemical reactions. 2016, IntechOpen.
40. G. Schiller, M. Müller, and F. Gitzhofer, Preparation of perovskite powders and coatings by radio frequency suspension plasma spraying. J. Therm. Spray Technol., 1999. 8(3): p. 389-392.
41. L. Fierro and J. D Getty, Plasma processes for printed circuit board manufacturing. 2003.
42. R. Deltschew, D. Hirsch, H. Neumann, T. Herzog, K.J. Wolter, M. Nowottnick, K.Wittke, Plasma treatment for fluxless soldering. Surf. Coat. Technol., 2001. 142: p. 803-807.
43. J. Mertens, J. Baneton, A. Ozkan, E. Pospisilova, B. Nysten, A. Delcorte, F. Reniers, Atmospheric pressure plasma polymerization of organics: effect of the presence and position of double bonds on polymerization mechanisms, plasma stability and coating chemistry. Thin Solid Films, 2019. 671: p. 64-76.
44. Y.-L. Kuo and K.-H. Chang, Atmospheric pressure plasma enhanced chemical vapor deposition of SiOx films for improved corrosion resistant properties of AZ31 magnesium alloys. Surf. Coat. Technol., 2015. 283: p. 194-200.
45. M. Thomas, Fundamental and trends pf plasma surface processing: surface engineering with atmospheric-pressure plasmas. 2018, Fraunhofer IST: Garmisch-Partenkirchen, Germany.
46. <https://skullsinthestars.com/2015/07/31/physics-demonstrations-lichtenberg-figures/>.
47. N. Thomas, F. Bagenal, T.W. Hill, J.K. Wilson, The Io neutral clouds and plasma torus. 2004. 1: p. 561-591.
48. <https://www.aps.org/publications/apsnews/201211/physicshistory.cfm>.
49. S.D. Kencana, Solderability testing on PCBs surface finish treated by atmospheric pressure plasma. in 3rd Japan - Taiwan International Engineering Forum 2019. 2019. Tokyo, Japan: 6U-Happier & NTU System.
50. Y.-L. Kuo, Industrial application of atmospheric pressure plasma technology for the surface engineering on metal and polymer substrates. in 3rd Japan - Taiwan International Engineering Forum 2019. 2019. Tokyo, Japan: 6U-Happier & NTU System.
51. S.D. Kencana, W. Chuang, E. Schellkes, Y.-W. Yen, Y.-L. Kuo, Improving the solder wettability via atmospheric plasma technology, in 2019 IEEE 69th Electronic Components and Technology Conference. 2019, IEEE: Las Vegas, Nevada, USA.
52. <https://plasmatreatment.co.uk/henniker-plasma-technology/plasma-surface-technology/plasma-technology-what-is-plasma-treatment/plasma-surface-activation/>.
53. T. Takamatsu, K. Uehara, Y. Sasaki, H. Miyahara, Y. Matsumara, A. Iwasawa, N. Ito, T. Azuma, M. Kohno, A. Okino, Investigation of reactive species using various gas plasmas, RSC Adv., 2014. 4(75): p. 39901-39905.
54. A.I. Shchedrin, D.S. Levko, A.V. Ryabstev, V.Ya. Chernyak, V.V. Yukhymenko, S.V. Olszewski, V.V. Naumov, I.V. Prysiazhnevych, E.V. Solomenko, V.P. Demchina, V.S. Kudryavtsev, Plasma kinetics in electrical discharge in mixture of air, water and ethanol vapors for hydrogen enriched syngas production, Problems of Atomic Science and Technology, 2008. 4: p. 159-162.
55. A. Schutze, J.Y. Jeong, S.E. Babayan, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE T. Plasma Sci., 1998. 26(6): p. 1685-1694.
56. S.D. Kencana, H.-P.W., A. Laksono, J.-Y. Guo, W. Chuang, E. Schellkes, Y.-W. Yen, and Y.-L. Kuo, Solder wettability improvement in cupper (Cu) substrate using direct current atmospheric pressure plasma. in 16th International conference on plasma surface engineering (PSE2018). 2018. Garmisch-Partenkirchen, Germany.
57. C.-L. Ko, Y.-L. Kuo, W.-J. Lee, H.-J. Sheng, and J.-Y. Guo, The enhanced abrasion resistance of an anti-fingerprint coating on chrome-plated brass substrate by integrating sputtering and atmospheric pressure plasma jet technologies. Appl. Surf. Sci., 2018. 448: p. 88-94.
58. Y. -M. Su, Y.-L. Kuo, C.-M. Lin, and S.-F. Lee, One-step fabrication of tetragonal ZrO2 particles by atmospheric pressure plasma jet. Powder Technol., 2014. 267: p. 74-79.
59. Y.-L. Kuo, Y.-M. Su, and J.-Y. Chang, A facile method for the deposition of Gd2O3-doped ceria films by atmospheric pressure plasma jet. Thin Solid Films, 2014. 570, Part B(0): p. 215-220.
60. Y.-L. Kuo, S.D. Kencana, and Y.-M. Su, Oxygen vacancy levels on gadolinia-doped ceria interlayer deposited by atmospheric pressure plasma jet for solid oxide fuel cells. Ceram. Int., 2018. 44(13): p. 15262-15268.
61. Y.-L. Kuo, S.D. Kencana, Y.-M. Su, and H.-T. Huang, Tailoring the O2 reduction activity on hydrangea-like La0.5Sr0.5MnO3 cathode film fabricated via atmospheric pressure plasma jet process. Ceram. Int., 2018. 44(7): p. 7349-7356.
62. C. Lee, H.W. Kim, and S. Kim, Organic contaminants removal by oxygen ECR plasma. Appl. Surf. Sci., 2007. 253(7): p. 3658-3663.
63. M.F. Mustafa, X. Fu, Y. Liu, Y. Abbas, H. Wanga, and W. Lu,, Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor. J. Hazard. Mater., 2018. 347: p. 317-324.
64. Z. Zhai and L. Feng, Effect of oxygen plasma treatment on bonding strength of epoxy coating on steel substrate. Progress in Organic Coat., 2019. 131: p. 36-41.
65. H.D. Miller, A. Akbarnezhad, S. Mesgari, and S.J. Foster, Performance of oxygen/argon plasma-treated steel fibres in cement mortar. Cement Concrete Comp., 2019. 97: p. 24-32.
66. G. Chen, Y. Gao, Y. Luo, and R. Guo, Effect of A site deficiency of LSM cathode on the electrochemical performance of SOFCs with stabilized zirconia electrolyte. Ceram. Int., 2017. 43(1, Part B): p. 1304-1309.
67. X.-M. Wang, C.-X Li, C.J. Li, and G.-J. Yang, Effect of microstructures on electrochemical behavior of La0.8Sr0.2MnO3 deposited by suspension plasma spraying. Int. J. Hydrogen Energy, 2010. 35(7): p. 3152-3158.
68. J. Nielsen and J. Hjelm, Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes. Electrochim. Acta, 2014. 115: p. 31-45.
69. A. Banerjee and O. Deutschmann, Elementary kinetics of the oxygen reduction reaction on LSM-YSZ composite cathodes. J. Catal., 2017. 346: p. 30-49.
70. W. Li, K. Lu, and Z. Xia, Interaction of (La1−xSrx)nCo1−yFeyO3−δ cathodes and AISI 441 interconnect for solid oxide fuel cells. J. Power Sources, 2013. 237(0): p. 119-127.
71. W. He, J. Zou, B. Wang, S. Vilayurganapathe, M. Zhou, X. Ling, K.H.L. Zhang, J. Lin, P. Xu, and J.H. Dickerson, Gas transport in porous electrodes of solid oxide fuel cells: A review on diffusion and diffusivity measurement. J. Power Sources, 2013. 237(0): p. 64-73.
72. P. He, H. Sun, Y. Gui, F. Lapostolle, H. Liao, and C. Coddet, Microstructure and properties of nanostructured YSZ coating prepared by suspension plasma spraying at low pressure. Surf. Coat. Technol., 2015. 261(0): p. 318-326.
73. M.E. Lynch, L. Yang, W. Qin, J.-J. Choi, M. Liu, K. Blinn, and M. Liu, Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform. Energy & Environmental Science, 2011. 4(6): p. 2249-2258.
74. A.A.S.D. Afiati, Feasibiliy of Atmospheric Pressure Plasma Jet for Bi-Layered LSCF-6428 based SOFC Cathode, in Mechanical Engineering. 2016, National Taiwan University of Science andn Technology: Taipei, Taiwan.
75. 林怡君,S.D. Kencana, 黃慧婷, 郭俞麟, 利用常壓電漿噴射束製備La0.5Sr0.5MnO3薄膜應用於固態氧化物燃料電池之陰極材料. 2016台灣陶瓷學會年會, 2016.
76. B.C.H. Steele, K.M. Hori, and S. Uchino, Kinetic parameters influencing the performance of IT-SOFC composite electrodes. Solid State Ionics, 2000. 135(1–4): p. 445-450.
77. Y.-L. Kuo, Y.-M. Su, and H.-L. Chou, A facile synthesis of high quality nanostructured CeO2 and Gd2O3-doped CeO2 solid electrolytes for improved electrochemical performance. PCCP, 2015. 17(21): p. 14193-14200.
78. Y. Leng, S.H. Chan, and Q. Liu, Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte. Int. J. Hydrog. Energy, 2008. 33(14): p. 3808-3817.
79. D. Beckel, U.P. Muecke, T. Gyger, G. Florey, A. Infortuna, and L.J. Gauckler, Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis. Solid State Ionics, 2007. 178(5–6): p. 407-415.
80. L. dos Santos-Gómez, E.R. Losilla, F. Martín, J.R. Ramos-Barrado, and D. Marrero-López, Novel microstructural strategies to enhance the electrochemical performance of La0.8Sr0.2MnO3−δ cathodes. ACS Appl. Mater. Interfaces, 2015. 7(13): p. 7197-7205.
81. K. Yasumoto, N. Mori, J. Mizusaki, H. Tagawa, and M. Dokiya, effect of oxygen nonstoichiometry on electrode activity of La1−xAxMnO3±δ cathode. J. Electrochem. Soc., 2001. 148(1): p. A105-A111.
82. Z. Zhan, and S.A. Barnett, An Octane-fueled solid oxide fuel cell. Science, 2005. 308(5723): p. 844-847.
83. Y.-M. Su, Microstructure characterization, chemical stability, and electrical property of ceramics nanopowders by atmospheric pressure plasma jet, in Mechanical Engineering. 2014, University of Science and Technology: Taipei. p. 134.
84. Y.-L. Kuo, Y.-M. Su, and J.-Y. Chang, A facile method for the deposition of Gd2O3-doped ceria films by atmospheric pressure plasma jet, in TACT 2013 International Thin Films Conference. p. 215-220.
85. Y.-L. Kuo, H.-W. Chen, and Y. Ku, Analysis of silver particles incorporated on TiO2 coatings for the photodecomposition of o-cresol. Thin Solid Films, 2007. 515(7): p. 3461-3468.
86. W. Widiyastuti, W.-N. Wang, I.W. Lenggoro, F. Iskandar, and K. Okuyama, Simulation and experimental study of spray pyrolysis of polydispersed droplets. JMR, 2011. 22(7): p. 1888-1898.
87. R. Vehring, Pharmaceutical particle engineering via spray drying. Pharm. Res., 2008. 25(5): p. 999-1022.
88. R.J. Lang, Ultrasonic atomization of liquids. J. Acoust. Soc. Am., 1962. 34(1): p. 6-8.
89. S.-Ju. Shih, Y.-Y. Wu, and C.-Y. Chen, Nanoscale yttrium distribution in yttrium-doped ceria powder. J. Nanopart. Res., 2009. 11(8): p. 2145-2152.
90. G.L. Messing, S.-C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. J. Amer. Ceram. Soc., 1993. 76(11): p. 2707-2726.
91. J. Fleig, Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance. Ann. Rev. of Mater. Res., 2003. 33(1): p. 361-382.
92. J. Sacanell, J.H. Sánchez, A.E.R. López, H. Martinelli, J. Siepe, A.G. Leyva, V. Ferrari, D. Juan, M. Pruneda, A.M. Gómez, and D.G. Lamas, Oxygen reduction mechanisms in nanostructured La0.8Sr0.2MnO3 cathodes for solid oxide fuel cells. J. Phys. Chem. C, 2017. 121(12): p. 6533-6539.
93. S. Chunwen, H. Rob, and R. Justin, Cathode materials for solid oxide fuel cells: A review. J. Solid State Electrochem., 2010. 14(7): p. 1125-1144.
94. A.T. Duong and D.R. Mumm, Microstructural optimization by tailoring particle sizes for LSM-YSZ solid oxide fuel cell composite cathodes. J. Electrochem. Soc., 2011. 159(1): p. B39-B52.
95. Y. Zheng, S. Ge, X. Zhou, H. Chenm S. Huang, S. Wang, and Y. Sun, LSM particle size effect on the overall performance of IT-SOFC. J. Rare Earths, 2012. 30(12): p. 1240-1244.
96. A.J. Darbandi, T. Enz, and H. Hahn, Synthesis and characterization of nanoparticulate films for intermediate temperature solid oxide fuel cells. Solid State Ionics, 2009. 180(4): p. 424-430.
97. E. Mostafavi, A. Babaei, and A. Ataie, La0.6Sr0.4Co0.2Fe0.8O3 perovskite cathode for intermediate temperature solid oxide fuel cells: A comparative study. Iranian Journal of Hydrogen & Fuel Cell, 2015. 1(4): p. 239-246.
98. A. Giesbers, Development of cathodes for low temperature solid oxide fuel cells: Oxygen reduction mechanism, in Inorganic Materials Science. 2004, University of Twente: Enschede, Netherlands.
99. Z. Chen, Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3 fuel cell electrodes, in Materials. 2014, Imperial College London: Imperial College London. p. 289.
100. C.-C. Yu, J.D. Baek, C.-H. Su, L. Fan, J. Wei, Y.-C. Liao, and P.-C. Su, Inkjet-printed porous silver thin film as a cathode for a low-temperature solid oxide fuel cell. ACS Appl. Mater. Interfaces, 2016. 8(16): p. 10343-10349.
101. C.W. Chang, S.C. Yang, C.-T. Tu, and C.R. Kao, Cross-interaction between Ni and Cu across Sn layers with different thickness. J. Electron. Mater., 2007. 36(11): p. 1455-1461.
102. D. Giuranno, S. Delsante, G. Borzone, and R. Novakovic, Effects of Sb addition on the properties of Sn-Ag-Cu/(Cu, Ni) solder systems. J. Alloys Compd., 2016. 689: p. 918-930.
103. S.-C. Kim and Y.-H. Kim, Review paper: Flip chip bonding with anisotropic conductive film (ACF) and nonconductive adhesive (NCA). Curr. Appl. Phys., 2013. 13: p. S14-S25.
104. Y.-L. Kuo, K.-H. Chang, and C. Chiu, Carbon-free SiOx ultrathin film using atmospheric pressure plasma jet for enhancing the corrosion resistance of magnesium alloys. Vacuum, 2017. 146: p. 8-10.
105. M. Audronis, S.J. Hinder, P. Mack, V. Bellido-Gonzalez, D. Bussery, A. Matthew, and M.A. Baker, A comparison of reactive plasma pre-treatments on PET substrates by Cu and Ti pulsed-DC and HIPIMS discharges. Thin Solid Films, 2011. 520(5): p. 1564-1570.
106. M.C. Biesinger, Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal., 2017. 49(13): p. 1325-1334.
107. G. Schön, ESCA studies of Cu, Cu2O and CuO. Surf. Sci., 1973. 35: p. 96-108.
108. M. Voinea, C. Vladuta, C. Bogatu, and A. Duta, Surface properties of copper based cermet materials. Mater. Sci. Eng., B, 2008. 152(1): p. 76-80.
109. D.M.M.D.L. Flamm, Plasma etching: An introduction. 1998, San Diego, CA: Academic Press, Inc.
110. A. Anders, Plasma and ion sources in large area coating: A review. Surf. Coat. Technol., 2005. 200(5): p. 1893-1906.
111. W.-C. Huang, Y.-L. Kuo, Y.-M. Su, Y.-H. Tseng, H.-Y. Tseng, H.-Y. Lee, Y. Ku, A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process. Chem. Eng. J., 2017. 316: p. 15-23.
112. Y.-L. Kuo, K.-H. Chang, T.-S. Hung, K.-S. Chen, and N. Inagaki, Atmospheric-pressure plasma treatment on polystyrene for the photo-induced grafting polymerization of N-isopropylacrylamide. Thin Solid Films, 2010. 518(24): p. 7568-7573.
113. S.-T. Lin, Y.-L. Kuo, and C. Lee, Characteristics of sputtered TaBx thin films as diffusion barriers between copper and silicon. Appl. Surf. Sci., 2003. 220(1): p. 349-358.
114. J.S.S.T. Association, Solder Ball Shear. 2014.
115. N. Hershkowitz, Role of plasma-aided manufacturing in semiconductor fabrication. IEEE T. Plasma Sci., 1998. 26(6): p. 1610-1620.
116. M. Ueshima, Y. Nakamura, S. Horii, and K. Sugiyama, Improvement of flux-less, lead-free solder wettability on CF4-plasma-fluorinated Sn and Ag substrates using ‘atmospheric pressure non-equilibrium plasma’. Surf. Coat. Technol., 2010. 205: p. S426-S430.
117. A. Sarani, A.Y. Nikiforov, and C. Leys, Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements. AIP Phys. Plasmas, 2010. 17(6): p. 063504.
118. X. Liu, G. Wang, J. Liu, J. Zhang, S. Liu, Z. Yang, J. Sun, and J. Song, Influence of water addition on the modification of polyethylene surface by nitrogen atmospheric pressure plasma jet. J. Appl. Poly. Sci., 2018. 0(0): p. 47136.
119. F. Fumagalli, O. Kylián, L. Amato, J. Hanuš. and F. Rossi, Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination. J. Phys. D: Appl. Phys., 2012. 45(13): p. 135203.
120. T.M. Long, S, Prakash, M.A. Shannon, and J.S. Moore, Water-vapor plasma-based surface activation for trichlorosilane modification of PMMA. Langmuir, 2006. 22(9): p. 4104-4109.
121. <http://www.ozoneservices.com/articles/007.htm>.
122. H.Y. Chuang, C.H. Lin, J.P. Chu, and C.R. Kao, Novel Cu–RuNx composite layer with good solderability and very low consumption rate. J. of Alloy. Compd., 2010. 504(2): p. L25-L27.
123. J.F. Moulder and J. Chastain, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. 1992: Physical Electronics Division, Perkin-Elmer Corporation.
124. J.S. Shaikh, R.C. Pawar, R.S. Devan, Y.R. Ma, P.P. Salvi, S.S. Kolekar, and P.S. Patil, Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochim. Acta, 2011. 56(5): p. 2127-2134.
125. M. Ramirez, L. Henneken, and S. Virtanen, Oxidation kinetics of thin copper films and wetting behaviour of copper and Organic Solderability Preservatives (OSP) with lead-free solder. Appl. Surf. Sci., 2011. 257(15): p. 6481-6488.
126. A.N. Kolodin and A.I. Bulavchenko, Contact angle and free surface energy of CdS films on polystyrene substrate. Appl. Surf. Sci., 2019. 463: p. 820-828.
127. B. Han, S. Liang, J. Zheng, X. Xie, K. Xiao, X. Wang, and X. Huang, Simultaneous determination of surface energy and roughness of dense membranes by a modified contact angle method. Colloids Surf. A., 2019. 562: p. 370-376.
128. J. Coates, Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry, 2006.
129. J.-W. Yoon, B.-I. Noh, and S.-B. Jung, Effects of third element and surface finish on interfacial reactions of Sn–Ag–xCu (or Ni)/(Cu or ENIG) solder joints. J. Alloy. Compd., 2010. 506(1): p. 331-337.
130. A. Wierzbicka-Miernik, K. Miernik, J. Wojewoda-Budka, L. Litynska-Dobriynska, and G. Garzel, Microstructure and chemical characterization of the intermetallic phases in Cu/(Sn,Ni) diffusion couples with various Ni additions. Intermetallics, 2015. 59: p. 23-31.
131. C.R. Kao, Phase diagrams of important electronic materials. JOM, 2002. 54: p. 44-44.
132. G.N. Hermana, Y.-W. Chang, P.-Y. Chen, C.-W. Chiu, Y.-W. Yen, Phase equilibria of the Sn-Ni-W ternary system at 750 °C. in 2016 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2016.
133. C.-F. Tseng and J.-G. Duh, Correlation between microstructure evolution and mechanical strength in the Sn–3.0Ag–0.5Cu/ENEPIG solder joint. Mater. Sci. Eng., A, 2013. 580: p. 169-174.
134. T.-T. Chou, R.-W. Song, W.-Y. Chen, J.-G. Duh, Enhancement of the mechanical strength of Sn-3.0Ag-0.5Cu/Ni joints via doping minor Ni into solder alloy. Mater. Lett., 2019. 235: p. 180-183.
135. K.N. Tu, H.-Y. Hsiao, and C. Chen, Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy. Microelectron. Reliab., 2013. 53(1): p. 2-6.
136. J.W. Yoon, J.H. Lim, N. Lee, J. Joo, S.-B. Jung, and W.-C. Moon, Interfacial reactions and joint strength of Sn-37Pb and Sn-3.5Ag solders with immersion Ag-plated Cu substrate during aging at 150 °C. J. Mater. Res., 2006. 21(12): p. 3196-3204.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top