跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王承斌
研究生(外文):WANG, CHENG-PIN
論文名稱:應用於生醫訊號擷取與無線傳輸系統晶片之 低功耗與高效能矽智財研究
論文名稱(外文):Research of low power and high performance silicon intellectual property for system-on-chip with bio-signal acquisition and wireless transmission
指導教授:朱元三李順裕
指導教授(外文):Yu-Sun ChuShuenn-Yuh Lee
口試委員:張順志朱元三李順裕蔡宗亨黃崇禧
口試委員(外文):Soon-Jyh ChangYuan-Sun ChuShuenn-Yuh LeeTsung-Heng TsaiChrong-Sii Hwang
口試日期:2019-01-23
學位類別:博士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:91
中文關鍵詞:無線傳輸心電訊號擷取射頻辨識系統濾波器資料轉換器
外文關鍵詞:wireless transmissionECG signal acquisitionRFID systemanalog filterdata converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:564
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個應用於智慧健康照護系統具有心電訊號擷取以及無線傳輸功能之系統晶片,此系統採用EPCglobal第一級第二世代通訊協定。基於此協定所設計出的貼身晶片可以避免使用主動式射頻電路傳輸訊號,以達到極低功耗以延長系統運作時間的目標。透過台灣半導體研發中心製作實際的系統晶片及內部電路以驗證構想,量測結果證實所提出之系統晶片具有低功率消耗、高資料傳輸效率、生理訊號辨識、高解析度的訊號轉換品質等特性。整體系統包括了被動式射頻前端電路、電源管理電路、基頻處理器、心電訊號擷取電路。射頻前端電路是將無線訊號解調變,將發射器的指令與參數傳給基頻處理器,接著基頻處理器會根據接收到的指令以及參數控制整個系統晶片的動作。心電訊號擷取電路則包括了前置放大器,類比濾波器以及數位類比轉換器。功用是將來自電極的物理電訊號轉換成數位資訊,並透過基頻處理器將此訊號用無線傳輸的方式回傳給外部裝置。在低功耗類比電路研究方面,相較於之前提出的類比濾波器,本論文提出一個具有自動頻寬校正極低耗之類比濾波器,並且搭配提出的轉導運算放大器,可以將整體濾波器的功耗降低46%,同時有效的提升濾波器的線性度。
This thesis presents a system chip for intelligent health care system with ECG signal acquisition and wireless transmission. This system is according to EPCglobal class-1 generation-2 communication protocol. Based on this protocol, proposed System-on-a-chip (SoC) can transmit signals without active RF circuits to achieve low power consumption and extend operating time of device. By fabricating a prototype chip to validate the proposed concept, the measurement results confirm that the SoC has characteristic of low power consumption, high data transmission efficiency, physiological signal recognition, and high-resolution signal conversion. The overall system includes a passive RF front-end circuit, a power management unit, a baseband processor, and an ECG signal acquisition circuit. The RF front-end circuit demodulates the received wireless signal and transmits the commands and parameters from the transmitter to the baseband processor. The baseband processor then controls the operation of the system according to the received commands and parameters. The ECG signal acquisition circuit includes a preamplifier, an analog filter, and a digital analog converter. The function of ECG signal acquisition circuit is to convert the physical electrical signal from electrode into digital information, and transmit the digitalized information to the external device through the baseband processor and backscatter. In the research of low-power analog circuit, this thesis proposes a low power analog filter with automatic bandwidth calibration mechanism. With the proposed transconductance operational amplifier, the power consumption of filter can be reduced by 46% while effectively increasing the linearity of the filter.
中文摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 X
第 1 章 序論 1
1.1 前言 1
1.2 研究目的及文獻探討 4
1.2.1 台灣健康照護市場展望與商機 4
1.2.2 行動健康照護系統國外發展趨勢 4
1.2.3 採用射頻辨識系統之低功耗無線ECG檢測系統晶片 5
第 2 章 應用於生醫訊號擷取與無線傳輸系統晶片 5
2.1 射頻前端電路 5
2.2 生理訊號之讀取電路 8
2.3 基頻處理器 10
2.4 系統晶片之實作 13
2.5 效能比較 15
第 3 章 低功耗連續時間類比濾波器 17
3.1 設計類比濾波器的規格以及挑戰 18
3.2 濾波器的架構 20
3.2.1 傳統低通濾波器 20
3.2.2 多重輸出全差動積分器 21
3.2.3 使用MOFD OTA實現類比濾波器 23
3.3 轉導運算放大器的電路實現 25
3.3.1 OTA的低轉導值實現與線性化技術 25
3.3.2 本論文提出的MOFD OTA 26
3.3.3 減少差動對面積的gm放大電路 28
3.3.4 雜訊 29
3.3.5 線性度 30
3.3.6 不匹配 31
3.3.7 製程電壓溫度變異性 32
3.3.8 設計考量 35
3.4 濾波器實現 35
3.5 量測結果 36
3.6 結論 39
第 4 章 結論與未來展望 40
4.1 結論 40
4.2 未來展望 41
附錄A 低功耗及低供應電壓之數位系統與矽智財 43
A.1 低功耗標準元件庫之設計流程 44
A.1.1 標準元件庫的內容 45
A.1.2 靜態時序分析以及製程檔案的內容 47
A.1.3 標準元件庫的特性化流程 51
A.2 非同步數位電路設計 57
A.3 應用於RFID標籤系統晶片之低功耗基頻處理器 60
A.3.1 提出的脈波間距編碼之解碼器 60
A.3.2 非同步系統設計 63
A.3.3 低功耗記憶體設計 64
A.3.4 整體數位系統之實現 66
A.4 全數位時脈產生器 67
A.4.1 對製程電壓溫度低敏感的環形震盪器 67
A.4.2 數位控制震盪器 69
A.4.3 延遲元件的特性 69
附錄B 具有心律不整檢測功能之混合訊號式類比前端電路 74
B.1 電容耦合式儀表放大器 74
B.2 時脈的安排 76
B.3 具有R波檢測功能的類比數位轉換器 77
B.4 R波檢測原理 78
B.5 量測結果 79
B.6 晶片製作與效能列表 81
B.7 總結 83
參考文獻 85
著作列表 90
作者簡介 91

[1]WHO. The top 10 causes of death. May. 2018. Retrieved Oct 29, 2018, from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
[2]內政部統計處。《內政統計月報》12月號,2018。資料檢索日期:2019年1月1日。網址:https://www.moi.gov.tw/files/site_stuff/321/1/month/month.html。
[3]經濟部統計處。產業經濟統計簡訊,2017。資料檢索日期:2018年10月15日。網址:https://www.moea.gov.tw/mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=3038。
[4]大紀元3月25日訊,「工研院啟動遠距居家護照服務計畫」,大紀元新聞網,2003。資料檢索日期:2018年10月15日。網址:http://www.epochtimes.com/b5/3/3/25/n291632.htm
[5]張峰源,「資通訊科技應用於健康照護發展現況」,長期照護雜誌,第10(2)期,101-110,2006。
[6]孫智麗、李卓倫,「台灣醫療產業發展關鍵因素與趨勢分析」,臺灣經濟研究月刊。96-106,2007。
[7]林茂榮、王夷暐,「社區老人跌倒的危險因子與預防」,台灣衛誌,23,259-271,2004。
[8]許哲瀚、唐憶淨,「遠距居家照護的現況與未來」,Taiwan Geriatrics & Gerontology, vol. 3, no. 4, pp. 272-285, Nov. 2008.
[9]R. Mukherji, C. Egyhazy, M. Johnson, “Architecture for a large healthcare information system,” IT Professional, vol. 4, no. 6, pp. 19-27, Dec 2002.
[10]C. Pattichis, E. Kyriacou, S. Voskarides, M. Pattichis, R. Istepanian, C. Schizas, “Wireless telemedicine systems: an overview,” IEEE Antennas & Propagation Mag., vol. 44, no. 2, pp. 143-153, April 2002.
[11]P. Ross, “Managing care through the air,” IEEE Spectrum, vol. 41, pp. 26-31, Dec. 2004.
[12]T. Amouh, M. Gemo, B. Macq, J. Vanderdonckt, A. W. El Gariani, M. Reynaert, L. Stamatakis, F. Thys, “Versatile clinical information system design for emergency departments,” IEEE Trans. Inf. Technol. Biomed., vol. 9, no. 2, pp. 174-183, Jun. 2005.
[13]G. Weiss, “Welcome to the (almost) digital hospital,” IEEE Spectrum, vol. 39, no. 3, pp.44-49, March 2002.
[14]S. J. Dwyer III, et al. “Teleradiology Using Switched Dialup Networks,” IEEE Journal on Selected areas in communications, vol. 10, no. 7, pp. 1161-1172, Sept. 1992.
[15]S. Akselsen, A. K. Eidsvik, T. Fokow, “Telemedicine and ISDN,” IEEE Commun. Mag., vol. 31, no. 1, pp. 46-51, 1993.
[16]J. Andreasson, M. Ekstrom, A. Fard, J. G. Castano, T. Johnson, “Remote system for patient monitoring using Bluetooth,” Proc. IEEE Sensors, vol. 1, pp. 304-307, Jun. 2002.
[17]R. H. Istepanian, B. Woodward, E. Gorilas, P. Balos, “Design of mobile telemedicine systems using GSM and IS-54 cellular telephone standards,” J. Telemedicine Telecare, vol. 4, pp. 80-82, 1998.
[18]D. L. Rollins, C. R. Killingsworth, G. P. Walcott, R. K. Justice, R. E. Ideker, “A Telemetry System for the Study of Spontaneous Cardiac Arrhytmias,” IEEE Trans on Biomed Eng., vol. 47, pp. 887-92, 2000.
[19]J. Yoo, L. Yan, S. Lee, Y. Kim, H. J. Yoo , “A 5.2mW Self-Configured Wearable Body Sensor Network Controller and a 12µW 54.9% Efficiency Wirelessly Powered Sensor for Continuous Health Monitoring System,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 178-188, Jan. 2010.
[20]E. Le Roux, et al., “A 1V RF SoC with an 863-to-928MHz 400kb/s Radio and a 32b Dual-MAC DSP Core for Wireless Sensor and Body Networks,” IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 464-465, Feb. 2010.
[21]M. Vidojkovic, “A 2.4GHz ULP OOK Single-Chip Transceiver for Healthcare Applications,” ISSCC, pp. 458-59, Feb. 2011..
[22]A. Wong, et al., “A 1V 5mA Multimode IEEE 802.15.6/Bluetooth Low-Energy WBAN Transceiver for Biotelemetry Applications,” ISSCC Dig. Tech. Papers, pp. 300-302, Feb 2012.
[23]F. Zhang, et al., “A Batteryless 19μW MICS/ISM-Band Energy Harvesting Body Area Sensor Node SoC,” ISSCC Dig. Tech. Papers, pp. 298-300, Feb 2012.
[24]C. P. Wang, S. Y. Lee, W. C. Lai, “An RFID tag system-on-chip with wireless ECG monitoring for intelligent healthcare systems,” in Proc. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 3-7, 2013, pp. 5489-5492.
[25]C. C. Tu, F. W. Lee, T. H. Lin, “An area-efficient capacitively-coupled instrumentation amplifier with a duty-cycled Gm-C DC servo loop in 0.18,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov, 2014, pp. 153-156.
[26]Y.-P. Chen et al., “An injectable 64 nW ECG mixed-signal SoC in 65 nm for arrhythmia monitoring,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 375-390, Jan. 2015.
[27]John G. Webster, Medical Instrumentation: Application and Design, John Wiley & Sons, Inc., 1998.
[28]P. Corbishley, E. Rodriguez-Villegas, “A nanopower bandpass filter for detection of an acoustic signal in a wearable breathing detector,” IEEE Trans. Biomed. Circuits Syst., vol. 1, no. 3, pp. 163-171, Sep. 2007.
[29]M. Yang, J. Liu, Y. Xiao, and H. Liao, “14. 4 nW fourth-order bandpass filter for biomedical applications," Electronics Lett., vol. 46, no. 14, pp. 973-974, Jul. 2010.
[30]R. Rieger, A. Demosthenous, J. Taylor, “A 230-nW 10-s time constant CMOS integrator for an adaptive nerve signal amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1968-1975, Nov. 2004.
[31]L. H. Ferreira, S. R. Sonkusale, “A hybrid multi-tanh bulk-driven input stage ota for low-thd biomedical g m-c applications,” in Proc. IEEE Int. Symp. Circuits Syst., May 2012, pp. 838-841.
[32]K. Salimi, F. Krummenachera, C. Dehollain, M. Declercq, “Continuous-time CMOS circuits based on multi-tanh linearization principle,” Electron. Lett., vol. 38, no. 3, pp. 103-104, Jan. 2002.
[33]I. Kianpour, B. Hussain, V. G. Tavares, H. S. Mendonca, “A low-power multi-tanh OTA with very low harmonic distortion,” in Proc. IEEE Int. Symp. Circuits Syst., May 2015, pp. 645-649.
[34]S. Sengupta, “Adaptively biased linear transconductor,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 52, no. 11, pp. 2369-2375, Nov. 2005.
[35]C.C. Hung, K. Halonen, M. Ismail, V. Porra, “Micropower CMOS GM-C filters for Speech signal Processing,” 1997 IEEE Int. Symposium on Circuit and Systems ISCAS '97, vol. 3, pp. 1972-1975, May 1997.
[36]J. Silva-Martínez, J. Salcedo-Suñer, “IC voltage-to-current transducers with very-small transconductance,” Analog Integrated Circuits Signal Proc., vol. 13, pp. 285-293, 1997.
[37]U. Yodprasit, J. Ngarmnil, “Micropower transconductor for very-low frequency filters,” in Proc. IEEE APCCAS'98, pp. 5-8, Nov. 1998.
[38]S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, E. Sanchez-Sinencio, “A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 47, no. 12, pp. 1391-1398, Dec. 2000.
[39] S. Y. Lee, C. J. Cheng, “Systematic design and modeling of an OTA–C filter for portable ECG detection,” IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 1, pp. 53-64, Feb. 2009.
[40]P. Tongpoon, et al., “Design of a linear transconductor considering effects of weak inversion region and mobility degradation,” ISPACS, 2009, Jan. 2009, pp. 280-283,
[41]T.-T. Zhang et al., “15-nW biopotential LPFs in 0.35- murmm CMOS using subthreshold-source-follower biquads with and without gain compensation,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 690-702, Oct. 2013.
[42]“Star-HSPICE User’s Manual,” Avanti! Corp., Fremont, CA, Jun. 2002, Release 2002.2.
[43]C. Y. Sun, S. Y. Lee, “Fifth-order Butterworth OTA–C LPF with multiple-output differential-input OTA for ECG applications,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 65, no. 4, pp. 421-425, April 2018.
[44]K. Ueno, T. Hirose, T. Asai, Y. Amemiya, “A 300 nW, 15 ppm/°C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2047-2054, Jul. 2009.
[45]T. Hirose, Y. Osaki, N. Kuroki, M. Numa, “A nano-ampere current reference circuit and its temperature dependence control by using temperature characteristics of carrier mobilities,” Proc. ESSCIRC, Sep. 2010, pp.114-117.
[46]B. Gosselin, M. Sawan, E. Kerherve, “Linear-phase delay filters for ultra-low-power signal processing in neural recording implants,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 3, pp. 171-180, Jun. 2010.
[47]Synopsys, “Liberty NCX User Guide.”
[48]Synopsys, “Library Compiler Methodology and Modeling Functionality in Technology Libraries User Guide.”
[49]Synopsys, “Liberty NCX Workshop Material.”
[50]V. Najafi, M. Jenabi, S. Mohammadi, A. Fotowat-Ahmady, M. Binesh Marvasti, “A Dual Mode EPC Gen 2 UHF RFID Transponder in 0.18μm CMOS,” Microelectronics Journal, vol. 41, no. 8, pp. 458-464, Aug. 2010.
[51]J. A. Rodríguez-Rodríguez et al., “An ultralow-power mixed-signal back end for passive sensor UHF RFID transponders,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1310-1322, Feb. 2012.
[52]W. Shi ; C. Choy ; C. Chan ; K. Leung ; K. Pun, “A 0.4 V low power baseband processor for UHF passive RFID tags,” IEEE NEWCAS 2010, pp. 65-68, Jun. 2010.
[53]W. Shi, C. Choy, “A 90nm RFID Tag's Baseband Processor With Novel PIE Decoder and Uplink Clock Generator,” IEEE MWSCAS 2010, pp. 644-647, Aug. 2010.
[54]C. Yu, J. Yu, C. Lee, “An eCrystal oscillator with self-calibration capability,” Proc. IEEE ISCAS, pp. 237-240, May. 2009.
[55]C. Chung, J. Li, “An All-Digital On-Chip Silicon Oscillator with Automatic VT Range Selection Relative Modeling,” ISCAS, 2013, pp. 2682-2685, May. 2013.
[56]R. Burt, J. Zhang, “A micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2729-2736, Dec. 2006.
[57]Q. Fan, F. Sebastiano, H. Huijsing, K. A. A. Makinwa, “A 1.8μW 60 nV/√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes,” IEEE J. Solid-State Circuits, vol. 46, pp. 1534-1543, Jul. 2011.
[58]C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS,” IEEE Symp. VLSI Circuits Dig., pp. 241-242, Jun. 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top