跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖國淵
研究生(外文):Kuo-Yuan Liao
論文名稱:基於梯形積分的比例積分微分控制器於單相換流器之設計
論文名稱(外文):Design of a Single-Phase Inverter using Trapezoidal Integration-Based Proportional Integral Derivative Controller
指導教授:張恩誌
指導教授(外文):En-Chih Chang
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:44
中文關鍵詞:比例積分微分控制器單相換流器梯形積分總諧波失真非線性負載
外文關鍵詞:PID (proportional-integral-derivative) controllerssingle-phase invertertrapezoidal integrationtotal harmonic distortion (THD)non-linear loads
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統比例積分微分控制器,因為架構簡單與設計容易已被廣泛應用於單相換流器。然而傳統的比例積分微分控制器之積分項為矩形積分,一旦換流器的負載為高度非線性,則會導致運算準確度降低,穩態誤差出現。本論文提出梯形積分的比例積分微分控制器,其梯形面積和不像矩形積分會低估誤差區域面積,進而產生計算誤差。因此,所提出的單相換流器,可以得到低總諧波失真輸出電壓與快速動態響應,解決了傳統比例積分微分控制的換流器在高度非線性負載下,容易產生追蹤誤差的問題。為了驗證所提出控制器的有效性,以MATLAB軟體模擬結果顯示,所提出的單相換流器無論是在電阻性負載或是步階負載改變亦或非線性負載狀況下,都可以有高品質的交流電壓輸出。

Traditional PID (proportional-integral-derivative) controllers have been broadly applied to single-phase inverters due to their simple structures and easy designs. Yet, the integral term of traditional PID controllers is based on rectangular integration. If the load of the inverter is highly non-linear, the precision of calculations will be low, and there will be steady-state errors. This thesis proposed a PID controller based on trapezoidal integration. Unlike rectangular integration, trapezoidal integration does not underestimate the error area, which can further result in calculation errors. Thus, the proposed single-phase inverter can achieve low total harmonic distortion (THD) output voltage and fast dynamic response. The problem with inverters using traditional PID controller of possible tracking errors in cases with highly non-linear loads can be resolved. To verify the effectiveness of the proposed controller, this thesis used the software MATLAB to run simulations. And the results showed that the AC output voltage of the proposed single-phase inverter is of high quality in any case with resistive load, step load change, or non-linear load.

中文摘要-i
英文摘要-ii
章節目錄-iv
圖目錄-vi
表目錄-vii
第一章 簡介-1
1-1 研究動機與背景-1
1-2 論文大綱-3
第二章 梯形積分的比例積分微分控制器-4
2-1 傳統比例積分微分控制器-4
2-1-1 比例控制器(P)-5
2-1-2 比例積分控制器(I)-6
2-1-3 比例微分控制器(D)-7
2-2 梯形積分的比例積分微分控制器-10
第三章 單相換流器之原理-12
3-1 單相換流器-12
3-1-1 單相換流器之半橋式-12
3-1-2 單相換流器之全橋式-13
第四章 電路模擬-15
4-1 單相換流器系統參數-15
4-1-1 模擬參數-15
4-1-2 所提出之模擬電路-16
4-2 模擬結果-18
第五章 結論與未來研究方向-25
5-1 結論-25
5-2 未來研究方向-26
參考文獻-27

[1]H. Bai, and C. Mi, Transients of Modern Power Electronics, U.K.: Wiley, 2011.
[2]A. F. Zobaa, and R. C. Bansal, Handbook of Renewable Energy Technology, N.J.: World Scientific, 2011.
[3]M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, N.J.: Pearson/Prentice Hall, 2004.
[4]J. P. Agrawal, Power Electronic Systems: Theory and Design, N.J.: Prentice Hall, 2001.
[5]C. W. Lander, Power Electronics, New York: McGraw-Hill, 1981.
[6]J. A. Ferreira, Electromagnetic Modelling of Power Electronic Converters, U.S.: Springer, 1989.
[7]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design,3rd edition, New York: John Wiley & Sons Inc., 2003.
[8]H. W. Whittington, Switched Mode Power Supplies: Design and Construction, New York: Whiley.1992.
[9]G. K. Dubey, Power Semiconductor Controlled Drives, New York: Prentice Hall, 1993, p. 481-483.
[10]H. C. Chiang, T. T. Ma, Y. H. Cheng, J. M. Chang, and W. N. Chang, “Design and implementation of a hybrid regenerative power system combining grid-tie and uninterruptible power supply functions,” IET Renewable Power Generation, vol. 4, pp. 85-99, 2010.
[11]Y. H. Chen, and P. T. Cheng, “An inrush current mitigation technique for the line-interactive uninterruptible power supply systems,” IEEE Trans. Industry Applications, vol. 46, pp. 1498-1508, 2010.
[12]E. K. Sato, M. Kinoshita, Y. Yamamoto, and T. Amboh, “Redundant high-density high-efficiency double-conversion uninterruptible power system,” IEEE Trans. Industry Applications, vol. 46, pp. 1525-1533, 2010.
[13]S. Roy, and L. Umanand, “Control technique for non-linear and unbalance compensation of an integrated magnetics-based three-phase series-shunt-compensated uninterruptible power supply,” IET Power Electronics, vol. 5, pp. 1525-1533, 2012.
[14]J. M. Shen, H. L. Jou, and J. C. Wu, “Transformerless single-phase three-wire line-interactive uninterruptible power supply,” IET Power Electronics, vol. 5, pp. 1847-1855, 2012.
[15]J. Platts, and J. St. Aubyn, Uninterruptible Power Supplies, London: Peter Peregrinus, 1992.
[16]V. I. Gurevich, Power Supply Devices and Systems of Relay Protection, Boca Raton: CRC Press, 2014.
[17]A. Emadi, A. H. Nasiri, and S. B. Bekiarov, Uninterruptible Power Supplies and Active Filters, Boca Raton : CRC Press, 2005.
[18]A. Lahyani, P. Venet, A. Guermazi, and A. Troudi, “Battery/supercapacitors combination in uninterruptible power supply(USP),” IEEE Trans. on Power Electronics, vol. 28, pp. 1509-1522 , 2013.
[19]M. I. Marei, I. Abdallah, and H. Ashour, “Transformerless uninterruptible power supply with reduced power device count,” Electric Power Components and Systems, vol. 39, pp. 1097-1116, 2011.
[20]陳柏達, “應用於不斷電系統之推挽式轉換器及全橋變頻器的研製” ,臺北科技大學碩士論文,民國102年。
[21]E. C. Chang, Y. C. Liu, and K. Y. Liao, “Complex sliding surface based on genetic algorithm and integral compensation for improving solar inverter performance”, International Conference on Mechanical, Automotive and Materials Engineering, pp. 42-46, 2015.
[22]E. C. Chang, Y. C. Liu, and K. Y. Liao, “Fuzzy-based nonlinear variable structure control of DC-AC inverters for wind energy systems", International Conference on Mechanical, Automotive and Materials Engineering, pp. 94-99, 2015.
[23]X. J. Wu, and X. J. Zhu, “Multi-loop control strategy of a solid oxide fuel cell and micro gas turbine hybrid system,” Journal of Power Sources, vol. 196, pp. 8444–8449, 2011.
[24]S. Sukita, J. Sakemi, and F. Kurokawa, “A new multi-loop digital control DC-DC converter,” Telecommunication - Energy Special Conference, pp. 1-5, 2009.
[25]K. H. Ahmed, and A. A. Aboushady, “Sensorless multi-loop control of phase-controlled series-parallel resonant converter,” Renewable Energy Research and Application, pp. 502-507, 2014.
[26]H. Zhang, L. Y. Wang, X. G. Yang, and Y. Bai, “A novel multi-loop control strategy for PWM converter based on LCL filter,” Electronics and Application Conference and Exposition, pp. 1282-1285, 2014.
[27]K. M. Tsang, and W. L. Chan, “Multi-loop controller for wide operating range single-ended primary inductor DC/DC converter,” IET Power Electronics, vol. 4, pp. 891 - 898 , 2011.
[28]A. Hasanzadeh, C. S. Edrington, B. Maghsoudlou, F. Fleming, and H. Mokhtari, “Multi-loop linear resonant voltage source inverter controller design for distorted loads using the linear quadratic regulator method,” IET Power Electronics, vol. 5, pp. 841-851, 2012.
[29]Q. Lei, F. Z. Peng, and S. T. Yang, “Multiloop control method for high-performance microgrid inverter through load voltage and current decoupling with only output voltage feedback,” IEEE Trans. Power Electronics, vol. 26, pp. 953-960, 2011.
[30]Q. Lei, S. T. Yang, and F. Z. Peng, “Multi-loop control algorithms for seamless transition of grid-connected inverter,” IEEE Trans. Power Electronics, vol. 26, pp. 953-960, 2011.
[31]S. W. Wang, and S. Wan, “Full digital deadbeat speed control for permanent magnet synchronous motor with load compensation,” IEEE Trans. Power Electronics, vol. 6, pp. 634 - 641, 2013.
[32]D. Martin, and E. Santi, “Autotuning of digital deadbeat current controllers for grid-tie inverters using wide bandwidth impedance identification,” IEEE Trans. Industry Applications, vol. 50, pp. 441-451, 2013.
[33]T. Ahmed, M. Nakaoka, and K. Nishida, “Cost-effective deadbeat current control for wind-energy inverter application with LCL filter,” IEEE Trans. Industry Applications, vol. 50, pp. 1185-1197, 2013.
[34]W. J. Zhang, J. M. Chen, D. G. Xu, and X. G. Zhang, “Deadbeat control strategy of circulating currents in parallel connection system of three-phase PWM converter,” IEEE Trans. Energy Conversion, vol. 29, pp. 406 – 417, 2014.
[35]Z. Salam, “Bidirectional high-frequency link inverter with deadbeat control,” Journal of Power Electronics, vol. 9, pp. 726-735, 2009.
[36]B. Abousoufiane, K. Kamel, C. Aissa, and S. Santigo, “Prediction-based deadbeat control for grid-connected inverter with L-filter and LCL-filter,” Electric Power Components and Systems, vol. 42, pp. 1266-1277, 2014.
[37]W. Xie, Y. C. Zhang, and Y. C. Zhang, “Deadbeat direct power control of three-phase pulse-width modulation rectifiers,” IET Power Electronics, vol. 7, pp. 1340-1346, 2014.
[38]A. R. Saxena, and M. Veerachary, “Robust digital deadbeat control for DC-DC power converter with online parameter estimation,” Drives and Energy Systems Power Electronics Conference, pp.1-5, 2010.
[39]M. Veerachary, and F. Taffesse, “Digital deadbeat controller for coupled inductor boost converter,” International Conference on Power Control and Embedded Systems, pp. 1-4, 2010.
[40]H. Utsugi, K. Ohishi, H. Haga, and K. Inazuma, “High-power-factor single-phase diode rectifier driven by repetitively controlled IPM motor,” IEEE Trans. Industrial Electronics, vol. 60, pp. 4427-4437, 2012.
[41]S. Jiang, D. Cao, F. Z. Peng, and Y. Li, “Grid-connected boost-half-bridge photovoltaic micro inverter system using repetitive current control and maximum power point tracking,” Applied Power Electronics Conference and Exposition, pp. 590-597, 2012.
[42]B. Mirzaeeian, M. Niroomand, H. A. Zarchi, and A. Asbafkan, “Frequency adaptive repetitive control of grid connected inverter for wind turbine applications,” Iranian Conference on Electrical Engineering, pp. 1-6, 2013.
[43]Y. H. Luo ; X. L. Duan, F. R. Meng, and Y. Jiang, “High performance repetitive controller for eliminating periodic disturbance of inverter with unbalance load,” Asia-Pacific Power and Energy Engineering Conference, pp. 1-4, 2012.
[44]X. B. Zhang, Z. Z. Kan, R. Zhang, C. J. Zhang, and B. Ben, “Improved repetitive control of single-phase three-level inverter based on PWM voltage feedback,” Electronics and Application Conference and Exposition, pp. 1328-1332, 2014.
[45]D. Chen, J. Zhang, and Z. Qian, “An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability,” IEEE Trans. Industrial Electronics, vol. 60, pp. 814-823, 2012.
[46]N. Chen, and Y. Zhang, “Sine waveform inverter based on S-domain repetitive control,” Control and Decision Conference, pp. 3584-3588, 2010.
[47]M. Jamil, S. M. Sharkh, M. A. Abusara, “Repetitive current control of an interleaved grid-connected inverter,” Power Electronics for Distributed Generation Systems, pp. 558-563, 2012.
[48]W. J. Li, C. Liu, J. W. Wei, T. Chen, and M. Li, “Comparison of two repetitive control strategies of UPS inverter on saber,” International Forum on Strategic Technology, vol. 1, pp. 575-579, 2011.
[49]K. Ueno, H. Maruta, H. Osuga, and F. Kurokawa, “A new control method for DC-DC converter by neural network predictor with repetitive training,” Machine Learning and Applications and Workshops Conference, pp. 292-297, 2011.
[50]K. I. Hwu, and Y. T. Yau, “Performance enhancement of boost converter based on PID controller plus linear-to-nonlinear translator,” IEEE Trans. Power Electronics, vol. 25, pp. 1351-1361, 2010.
[51]S. Kapat, and P. T. Krein, “Formulation of PID control for DC–DC converters based on capacitor current: A geometric context,” IEEE Trans. Power Electronics, vol. 27, pp. 1424-1432, 2012.
[52]V. Mummadi, “Design of robust digital PID controller for H-Bridge soft-switching boost converter,” IEEE Trans. Industrial Electronics, vol. 58, pp. 2883-2897, 2011.
[53]H. H. Park, and G. H. Cho, “A DC–DC converter for a fully integrated PID compensator with a single capacitor,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 61, pp. 2883-2897, 2014.
[54]H. H. Park, Y. J. Woo, and G. H. Cho, “A fully integrated wide-band PID controller with capacitor-less compensation for step-down DC-DC converter”, IEEE International Symposium on Circuits and Systems, pp. 506 -509, 2011.
[55]H. B. Shin, and J. G. Park, “Anti-windup PID controller with integral state predictor for variable-speed motor drives,” IEEE Trans. Industrial Electronics, vol. 59, pp. 1509-1516, 2012.
[56]S. Bennett, A History of Control Engineering, IET, 1993.
[57]葉姿君,“具有可變參數的比例積分微分控制器於不斷電系統換流器之應用”,義守大學碩士論文,民國102年。
[58]M. Hernandez-Gomez, R. Ortega, F. Lamnabhi-Lagarrigue, and G. Escobar, “Adaptive PI stabilization of switched power converters,” IEEE Trans. Control Systems Technology, vol. 18, pp. 688-698, 2010.
[59]陳柏祺,“超高速伺服油壓系統與元件響應時間之研究”,中原大學碩士論文,民國92年。
[60]C. Heising, R. Bartelt, M. Oettmeier, V. Staudt, and A. Steimel, “Analysis of single-phase 50-kW 16.7-Hz PI-controlled four-quadrant line-side converter under different grid characteristics,” IEEE Trans. Industrial Electronics, vol. 57, pp. 523-531, 2010.
[61]史廷揆,“以傳統PID控制器為基礎之類神經網路PID控制器設計與研究” , 中華大學碩士論文,民國100年。
[62]林彥谷,“具修正型微分先行比例積分微分控制之直流-交流換流器之研製” ,義守大學碩士論文,民國102年。
[63]G. Nikolakopoulos, S. Manesis, and G. Andrikopoulos, “Advanced nonlinear PID-based antagonistic control for pneumatic muscle actuators,” IEEE Trans. Industrial Electronics, vol. 61, pp. 6926- 6937, 2014.
[64]呂鋒恩、許健男、魏逢任,“比例積分微分控制器”,專題論文。
[65]黄友锐,“PID控制器參數整定與實現”,中國科學出版社,民國99年。
[66]W. M. Feng, B. S. Shi, and Z. J. Wu, “Included in your digital subscription the electric energy measurement method based on modified trapezoidal integral,” International Conference on Electronics Communications and Control, pp.2914-2917, 2011.
[67]S. O. Rice, “Efficient evaluation of integrals of analytic functions by the trapezoidal rule,” Bell System Technical Journal, vol. 52, pp. 707-722, 1973.
[68]M. R. Rapaic, A. Pisano, and Z. D. Jelicic, “Trapezoidal rule for numerical evaluation of fractional order integrals with applications to simulation and identification of fractional order systems,” IEEE International Conference on Control Applications, pp. 1008-1013, 2012.
[69]R. H. Lasseter, J. J. Sanchez, and F. L. Alvarado, “Testing of trapezoidal integration with damping for the solution of power transient problems,” IEEE Trans. Power Apparatus and Systems, vol. 102, pp. 3783-3790, 1983.
[70]F. L. Alvarado, “Parallel solution of transient problems by trapezoidal integration,” IEEE Trans. Power Apparatus and Systems, vol. 98, pp. 1080-1090, 1979.
[71]M. M. Chawlaa, M. A. Al-Zanaidi, and D. J. Evansa, “A class of generalized trapezoidal formulas for the numerical integration,” International Journal of Computer Mathematics, pp. 131-142, 2007.
[72]陶永華,“新型PID控制及其應用”,機械工業出版社,民國91年。
[73]劉金琨,“先進PID控制及其MATLAB仿真”,北京:電子工業出版社,民國91年。
[74]I. S. MacKenzie, and R. C.W.Phan, The 8051 Microcontroller, Posts and Telecom Press, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊