跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韋儒
研究生(外文):Chen Wei-ru
論文名稱:運用模糊度函數進行水下目標物偵測之研究
論文名稱(外文):The Study of Using Ambiguity Function in Underwater Target Detection
指導教授:邱永盛邱永盛引用關係
指導教授(外文):Linus Y.S Chiu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海下科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:112
中文關鍵詞:港灣聲學水下偵測模糊度函數都卜勒效應主動聲學
外文關鍵詞:Harbor acousticUnderwater detectAmbiguity functionDoppler effectActive acoustic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
台灣四面環海,港灣防衛一直是重要的議題及發展方向,而聲學偵測又為進行港灣防衛有效的方式之一。無論要建置被動或主動的聲學系統,皆須掌握港灣的聲場特性。當訊號在水下傳遞時,會因折射、反射或散射造成一定的多路徑效應(Multipath effect),並且聲波能量也會因高噪度的船舶活動與底床吸收,導致訊雜比降低,造成偵測移動目標物的接收訊號受到干擾而發生接收錯誤。有鑑於此,本研究主要的目的為透過主動偵測實驗,發展主動聲納回波訊號之處理流程,並研究利用模糊度函數(Ambiguity function)解析港灣環境固定結構及動態結構物的可行性,期望與實驗室自行研發之自收發聲納系統結合,發展自主式港灣防衛主動聲納系統偵測雛形。
在主動偵測過程中,主動聲納拍發之聲波將被水面、海床或水下目標物反射,而當聲源與目標物之間有相對位移存在時,會產生中心頻率位移的現象,稱為都卜勒效應(Doppler effect) ,此回波訊號頻率位移可作為偵測判斷之標的。為發展水下主動偵測的技術,本研究團隊分別於2017年5、6月在高雄港外以海研三號研究船(R / V OCEAN RESEARCHER III)為載台,下放本研究團隊自行研發之自收發拖曳式聲納系統(Towed sonar system)進行水下目標物之主動偵測實驗;同年12月於高雄港內使用定點收發聲納系統進行聲學實驗。實驗過程使用具有高辨識度與高抗噪性的掃頻訊號(Linear Frequency Modulation,LFM)量測水下通道脈衝響應(Channel Impulse Response,CIR),並使用具有高頻率辨識度之最大序列碼訊號(Maximum Length Sequence,MLS)結合模糊度函數進行反射都卜勒分析,解析水下環境狀態,討論高雄港內及港外在偵測水下目標物方面所面臨之困難,並可作為日後發展港灣防衛系統雛形之依據。
Taiwan is surrounded by ocean so that harbor defense has always been one of the most important topics of development priorities. Whether building a passive or active acoustic system, we must first grasp the sound field characteristics of the harbor. When soundwave propagated in ocean, the energy of soundwave will be absorbed by boundary or will decrease due to multipath effect. In this situation, to detect underwater target became more difficult and inaccurate due to the poor signal to noise ratio (SNR). Thus, the aims of this research were to develop received signal processing methods which conducted by active acoustic experiment, using Ambiguity function to analyse moving target condiction and combined with our towed sonar system to develop harbor defenses prototype.
In the application of active acoustic, soundwave emitted form active sonar will be reflected by sea surface, ocean boundary or moving target. When there is relative motion between the source and the target, Doppler phase-shift effects will cause frequency of received echo changed. In order to undertake the analysis of active acoustic underwater detection, this research using Linear Frequency Modulation (LFM) and Maximum Length Sequence (MLS) which both have high degree of recognition and high noise immunity to detect moving target. After doing pulse compression and compensate the doppler shift, we can estimate speed and direction of moving target even as positioning.
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與研究目的 3
1.3 文獻回顧 4
1.4 論文架構 13
第二章 研究方法與理論 15
2.1 脈衝壓縮 16
2.2 都卜勒效應 23
2.3 模糊度函數與最大長度序列碼訊號 25
第三章 港外水下目標物偵測實驗 28
3.1 主動聲學前導實驗 ― 水槽實驗 29
3.2 高雄港外水下目標物偵測實驗簡介 32
3.2.1 實驗地點與各航次細節 32
3.2.2 拖曳式自收發聲納系統 (Towed sonar system) 39
3.2.3 溫壓記錄儀(Temperature depth recorder) 43
3.2.4線性頻率調變訊號(Linear Frequency Modulation,LFM) 44
3.3實測資料分析結果 46
3.3.1 港外水下目標物偵測實驗結果 46
3.3.2 港外水下目標物反射都卜勒模擬 53
第四章 港內移動目標物偵測實驗 59
4.1高雄港內移動水下目標物偵測實驗簡介 59
4.1.1 實驗地點與日期 59
4.1.2 實驗儀器配置 60
4.1.3 實驗移動目標物 61
4.1.4 實驗聲源訊號 62
4.2高雄港內環境與移動目標物分析 64
4.2.1 場域分析與環境背景資訊 64
4.2.2 目標物移動狀態分析 65
4.3實測資料分析結果 70
4.4 主動聲納系統佈放深度探討 82
4.4.1主動聲納系統佈放深度探討 82
4.4.2移動目標物偵測 85
第五章 結論與討論 89
5.1實驗結果統整與探討 89
5.2使用限制與未來應用 91
5.2.1 非單一反射體辨識 91
5.2.2 目標物速度估算應用 91
參考文獻 93
附錄一 主動聲學實驗日誌 97
附錄二 高雄港內環境背景噪音 100
[1]Urick, R. J. (1967). Principles of underwater sound for engineers. Tata McGraw-Hill Education.
[2]Wood Hold Oceanographic Institution
(http://acoustics.whoi.edu/multi/sounds/ASIAEx_2001/ship.html)
[3]Stevens Institute of Technology Maritime Security Center (https://www.stevens.edu/research- entrepreneurship/research-centers-labs/maritime-security-center)
[4]Badiey, M. (2016). Underwater sound propagation and scattering in Ports and Harbors. The Journal of the Acoustical Society of America, 140(4), 3289-3289.
[5]Borowski, B., Sutin, A., Roh, H. S., and Bunin, B. (2008, April). Passive acoustic threat detection in estuarine environments. In Proc. SPIE (Vol. 6945, p. 694513).
[6]Cotter, E. D., Murphy, P., Joslin, J., Brunton, S., Stewart, A., and Polagye, B. L. (2016). Use of integrated instrumentation to detect and classify targets in shallow water. The Journal of the Acoustical Society of America, 140(4), 3350-3350.
[7]Weber, T. C., and Ward, L. (2016). High-frequency seafloor scattering in a dynamic harbor environment: Observations of change over time scales of seconds to seasons. The Journal of the Acoustical Society of America, 140(4), 3348-3349.
[8]Thompson, P. O., Cummings, W. C., and Ha, S. J. (1986). Sounds, source levels, and associated behavior of humpback whales, Southeast Alaska. The Journal of the Acoustical Society of America, 80(3), 735-740.
[9]Gedamke, J., Costa, D. P., and Dunstan, A. (2001). Localization and visual verification of a complex minke whale vocalization. The Journal of the Acoustical Society of America, 109(6), 3038-3047.
[10]Stolkin, R., Sutin, A., Radhakrishnan, S., Bruno, M., Fullerton, B., Ekimov, A., and Raftery, M. (2006, May). Feature based passive acoustic detection of underwater threats. In Proceedings of SPIE (Vol. 6204, pp. 620408-620408).
[11]Ferguson, B. G., Lo, K. W., and Wyber, R. J. (2006, September). Advances in high-frequency active sonars for countering asymmetric threats in littoral waters. In OCEANS 2006 (pp. 1-6). IEEE.
[12]He, H., Li, J., and Stoica, P. (2012). Waveform design for active sensing systems: a computational approach. Cambridge University Press.
[13]Josso, N. F., Ioana, C., Mars, J. I., and Gervaise, C. (2010). Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering. The Journal of the Acoustical Society of America, 128(6), 3416-3425.
[14]Sibul, L. H., Weiss, L. G., and Dixon, T. L. (1994). Characterization of stochastic propagation and scattering via Gabor and wavelet transforms. Journal of Computational Acoustics, 2(03), 345-369.
[15]Shenoy, R. G., and Parks, T. W. (1995). Wide-band ambiguity functions and affine Wigner distributions. Signal Processing, 41(3), 339-363.
[16]Iem, B. G., Papandreou-Suppappola, A., and Boudreaux-Bartels, G. F. (2002). Wideband Weyl symbols for dispersive time-varying processing of systems and random signals. IEEE Transactions on Signal Processing, 50(5), 1077-1090.
[17]Li, X., Jia, H., and Yang, M. (2017, December). Underwater target detection based on fourth-order cumulant beamforming. In Proceedings of Meetings on Acoustics 174ASA (Vol. 31, No. 1, p. 055001). ASA.
[18]Sejdić, E., Djurović, I., and Jiang, J. (2009). Time–frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19(1), 153-183.
[19]Hermand, J. P., and Roderick, W. I. (1988). Delay‐Doppler resolution performance of large time‐bandwidth‐product linear FM signals in a multipath ocean environment. The Journal of the Acoustical Society of America, 84(5), 1709-1727.
[20] DeFerrari, H., and Wylie, J. (2013, June). Ideal signals and processing for continuous active sonar. In Proceedings of Meetings on Acoustics ICA2013(Vol. 19, No. 1, p. 055058). ASA.
[21]Josso, N. F., Ioana, C., Mars, J. I., and Gervaise, C. (2010). Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering. The Journal of the Acoustical Society of America, 128(6), 3416-3425.
[22]Chestnut, P., Landsman, H., and Floyd, R. W. (1979). A sonar target recognition experiment. The Journal of the Acoustical Society of America, 66(1), 140-147.
[23]Marandet, C., Roux, P., Nicolas, B., and Mars, J. (2011). Target detection and localization in shallow water: An experimental demonstration of the acoustic barrier problem at the laboratory scale. The Journal of the Acoustical Society of America, 129(1), 85-97.
[24]Yang, T. C. (2007, September). Acoustic Dopplergram for intruder defense. In OCEANS 2007 (pp. 1-5). IEEE.
[25]陳薈如. (2016). 局部海面波浪對垂直入射聲場之影響. 中山大學海下技術研究所學位論文, 1-79.
[26]羅吉村(2014),台灣東北海域水下聲學通道脈衝響應之量測與觀測,中山大學海下科技暨應用海洋物理研究所學位論文.
[27]Yang, T. C., Schindall, J., Huang, C. F., and Liu, J. Y. (2012). Clutter reduction using Doppler sonar in a harbor environment. The Journal of the Acoustical Society of America, 132(5), 3053-3067.
[28]Altes, R. A. (1973). Some invariance properties of the wide‐band ambiguity function. The Journal of the Acoustical Society of America, 53(4), 1154-1160.
[29]Mackenzie, K. V. (1981). Nine‐term equation for sound speed in the oceans. The Journal of the Acoustical Society of America, 70(3), 807-812.
[30]Sharif, B. S., Neasham, J., Hinton, O. R., and Adams, A. E. (2000). A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE Journal of oceanic engineering, 25(1), 52-61.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top