|
[1]Urick, R. J. (1967). Principles of underwater sound for engineers. Tata McGraw-Hill Education. [2]Wood Hold Oceanographic Institution (http://acoustics.whoi.edu/multi/sounds/ASIAEx_2001/ship.html) [3]Stevens Institute of Technology Maritime Security Center (https://www.stevens.edu/research- entrepreneurship/research-centers-labs/maritime-security-center) [4]Badiey, M. (2016). Underwater sound propagation and scattering in Ports and Harbors. The Journal of the Acoustical Society of America, 140(4), 3289-3289. [5]Borowski, B., Sutin, A., Roh, H. S., and Bunin, B. (2008, April). Passive acoustic threat detection in estuarine environments. In Proc. SPIE (Vol. 6945, p. 694513). [6]Cotter, E. D., Murphy, P., Joslin, J., Brunton, S., Stewart, A., and Polagye, B. L. (2016). Use of integrated instrumentation to detect and classify targets in shallow water. The Journal of the Acoustical Society of America, 140(4), 3350-3350. [7]Weber, T. C., and Ward, L. (2016). High-frequency seafloor scattering in a dynamic harbor environment: Observations of change over time scales of seconds to seasons. The Journal of the Acoustical Society of America, 140(4), 3348-3349. [8]Thompson, P. O., Cummings, W. C., and Ha, S. J. (1986). Sounds, source levels, and associated behavior of humpback whales, Southeast Alaska. The Journal of the Acoustical Society of America, 80(3), 735-740. [9]Gedamke, J., Costa, D. P., and Dunstan, A. (2001). Localization and visual verification of a complex minke whale vocalization. The Journal of the Acoustical Society of America, 109(6), 3038-3047. [10]Stolkin, R., Sutin, A., Radhakrishnan, S., Bruno, M., Fullerton, B., Ekimov, A., and Raftery, M. (2006, May). Feature based passive acoustic detection of underwater threats. In Proceedings of SPIE (Vol. 6204, pp. 620408-620408). [11]Ferguson, B. G., Lo, K. W., and Wyber, R. J. (2006, September). Advances in high-frequency active sonars for countering asymmetric threats in littoral waters. In OCEANS 2006 (pp. 1-6). IEEE. [12]He, H., Li, J., and Stoica, P. (2012). Waveform design for active sensing systems: a computational approach. Cambridge University Press. [13]Josso, N. F., Ioana, C., Mars, J. I., and Gervaise, C. (2010). Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering. The Journal of the Acoustical Society of America, 128(6), 3416-3425. [14]Sibul, L. H., Weiss, L. G., and Dixon, T. L. (1994). Characterization of stochastic propagation and scattering via Gabor and wavelet transforms. Journal of Computational Acoustics, 2(03), 345-369. [15]Shenoy, R. G., and Parks, T. W. (1995). Wide-band ambiguity functions and affine Wigner distributions. Signal Processing, 41(3), 339-363. [16]Iem, B. G., Papandreou-Suppappola, A., and Boudreaux-Bartels, G. F. (2002). Wideband Weyl symbols for dispersive time-varying processing of systems and random signals. IEEE Transactions on Signal Processing, 50(5), 1077-1090. [17]Li, X., Jia, H., and Yang, M. (2017, December). Underwater target detection based on fourth-order cumulant beamforming. In Proceedings of Meetings on Acoustics 174ASA (Vol. 31, No. 1, p. 055001). ASA. [18]Sejdić, E., Djurović, I., and Jiang, J. (2009). Time–frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19(1), 153-183. [19]Hermand, J. P., and Roderick, W. I. (1988). Delay‐Doppler resolution performance of large time‐bandwidth‐product linear FM signals in a multipath ocean environment. The Journal of the Acoustical Society of America, 84(5), 1709-1727. [20] DeFerrari, H., and Wylie, J. (2013, June). Ideal signals and processing for continuous active sonar. In Proceedings of Meetings on Acoustics ICA2013(Vol. 19, No. 1, p. 055058). ASA. [21]Josso, N. F., Ioana, C., Mars, J. I., and Gervaise, C. (2010). Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering. The Journal of the Acoustical Society of America, 128(6), 3416-3425. [22]Chestnut, P., Landsman, H., and Floyd, R. W. (1979). A sonar target recognition experiment. The Journal of the Acoustical Society of America, 66(1), 140-147. [23]Marandet, C., Roux, P., Nicolas, B., and Mars, J. (2011). Target detection and localization in shallow water: An experimental demonstration of the acoustic barrier problem at the laboratory scale. The Journal of the Acoustical Society of America, 129(1), 85-97. [24]Yang, T. C. (2007, September). Acoustic Dopplergram for intruder defense. In OCEANS 2007 (pp. 1-5). IEEE. [25]陳薈如. (2016). 局部海面波浪對垂直入射聲場之影響. 中山大學海下技術研究所學位論文, 1-79. [26]羅吉村(2014),台灣東北海域水下聲學通道脈衝響應之量測與觀測,中山大學海下科技暨應用海洋物理研究所學位論文. [27]Yang, T. C., Schindall, J., Huang, C. F., and Liu, J. Y. (2012). Clutter reduction using Doppler sonar in a harbor environment. The Journal of the Acoustical Society of America, 132(5), 3053-3067. [28]Altes, R. A. (1973). Some invariance properties of the wide‐band ambiguity function. The Journal of the Acoustical Society of America, 53(4), 1154-1160. [29]Mackenzie, K. V. (1981). Nine‐term equation for sound speed in the oceans. The Journal of the Acoustical Society of America, 70(3), 807-812. [30]Sharif, B. S., Neasham, J., Hinton, O. R., and Adams, A. E. (2000). A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE Journal of oceanic engineering, 25(1), 52-61.
|