跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/30 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張峰誌
研究生(外文):ZHANG, FENG-ZHI
論文名稱:電池堆數量配置對全釩氧化還原液流電池系統性能影響之模擬研究
論文名稱(外文):Modeling of Effect of Stack Number on the Performance of an All-Vanadium Redox Flow Battery
指導教授:陳永松陳永松引用關係
指導教授(外文):CHEN, YONG-SONG
口試委員:謝錦隆許寧逸
口試委員(外文):XIE, JIN-LONGHU XU, NING YI
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:107
中文關鍵詞:全釩氧化還原液流電池歧路電流泵浦流率系統效率
外文關鍵詞:all-vanadium redox flow batteryshunt currentpump flow ratesystem efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
全釩氧化還原液流電池(All-Vanadium Redox Flow Battery,VRFB)是一種利用不同氧化態的釩離子進行氧化還原反應的儲能裝置。其具有效率高、壽命長、成本低、功率與儲能容量能夠彈性擴充等優點。通常全釩液流電池會和太陽能或是風能等間歇性可再生能源結合應用,使電力能夠穩定輸出。而電池設計和操作條件是影響釩液流電池性能的重要因素,另外,當多個電池堆串聯連接時,在電解質中會產生歧路電流,降低電池效率。在此研究中,基於克西荷夫定律建構一個數學模型來研究電池堆數量對系統效率的影響。預測不同電池堆數量下電池堆內以及管線系統的歧路電流。
其模擬結果表明,增加電池堆數量能有效降低歧路電流之損耗,但同時會使多電池堆系統總壓力降增加,歧路電流對電池系統效率有很大的影響。在本研究中,系統主歧管管徑為1.75 inch時,電解液流率為0.49 ml min−1 cm−2,電池堆數量為24 stacks時提供了最大的淨輸出功率。

An all-vanadium redox flow batteries (VRFBs) is an energy storage device that uses redox reaction of vanadium ions with different oxidation states. It has the advantages of high efficiency, long life, low cost, flexible expansion of power and energy storage capacity. Usually VRFBs are combined with intermittent renewable energy sources such as solar or wind energy to enable stable output of electricity. The battery design and operating conditions are important factors that affect the performance of the all-vanadium flow battery. In addition, when multiple battery stacks are connected in series, shunt currents are also generated in the electrolyte path ways, which reduce the battery efficiency. In this study a mathematical model to investigate the effect stack number on the system efficiency is developed based on Kirchhoff’s law. The shunt currents within each stack and piping system are predicted under various stack numbers.
Simulation results show that increasing the number of stacks can effectively reduce the loss of the shunt current, but simultaneously increase the total pressure drop of the electrolyte within the multi-stack system. The shunt current loss has a great influence on the efficiency of the battery system. In this study, the system with the manifold diameter of 1.75 inch, electrolyte flow rate of 0.49 ml min−1 cm−2, and number of twenty-four stacks battery provides the maximum of net output power


誌謝 i
摘要 ii
Abstract iii
圖目錄 viii
表目錄 xiv
第1章 緒論 1
1-1 研究背景 1
1-2 儲能系統簡介 1
1-2-1 飛輪儲能 1
1-2-2 抽蓄水力儲能 2
1-2-3 壓縮空氣儲能 3
1-2-4 二次電池 3
1-2-5 氧化還原液流電池 3
1-3 全釩氧化還原液流電池簡介 4
1-3-1 全釩液流電池工作原理 4
1-3-2 全釩液流電池結構組成 5
1-3-3 全釩液流電池效率計算 6
1-3-4 電解液操作條件 6
1-3-5 電池堆歧路電流介紹 7
第2章 文獻回顧 8
2-1 電池元件影響 8
2-2 電解液操作條件 14
2-3 電池堆系統效率之影響 19
2-4 研究目的 23
第3章 研究方法與過程 24
3-1 研究方法 24
3-2 電池堆串聯系統歧路電流模型 25
3-2-1 歧路電流模型 25
3-2-2 模型求解方法 27
3-2-3 電池堆模型流道設計 29
3-2-4 能量轉換效率 30
3-3 電池堆串聯系統泵浦耗能模型 31
3-3-1 電池堆內部壓力降 33
3-3-2 電池堆外部管線壓力降 34
3-4 電池系統效率 35
第4章 結果與討論 37
4-1 歧路電流之模擬結果 37
4-1-1 電流分布情形 38
4-1-2 電池堆內歧路電流分布情形 42
4-1-3 電池堆間歧路電流分布情形 65
4-1-4 電池堆歧路電流所造成之功率損耗 85
4-1-5 充放電能量轉換效率 85
4-2 泵浦耗能之模擬結果 88
4-2-1 電池堆之總壓力降 88
4-2-2 主流道歧管尺寸之影響 91
4-2-3 主流道歧管尺寸對泵浦耗能之影響 94
4-3 電池系統效率分析 96
第5章 結論 104

[1]經濟部能源局, “新能源政策,” https://www.moeaboe.gov.tw/ECW/populace/content/ContentDesc.aspx?menu_id=3165
[2]經濟部能源局-能源報導全球資訊網, “穩定的巨型電池-抽蓄水力儲能系統,”
https://www.moeaboe.gov.tw/ECW/populace/content/ContentDesc.aspx?menu_id=6985
[3]能源教育知識網, “儲能科技-飛輪儲能,”
http://www.enedu.org.tw/Technology/?id=7
[4] 能源教育知識網, “儲能科技-壓縮空氣儲能系統,”
http://www.enedu.org.tw/Technology/index.php?id=10
[5]https://ejournal.stpi.narl.org.tw/sd/download?source=10202-08.pdf&vlId=41F909BE-F0BC-416A-A38F-9DA43C8B04F0&nd=1&ds=1
[6]臺灣大學化學系, “蔡蘊明-淺談電能儲存與液流電池(flow batteries)的最新發展,”
https://www.ch.ntu.edu.tw/office/article/flow-batteries.html
[7]專題報導“新型儲能電池 − 全釩液流電池的原理與發展現況,” http://chemistry.org.tw/servxx6/files/paper_13970_1381216305.pdf
[8]J. Kim, H. Park, “Experimental analysis of discharge characteristics in vanadium redox flow battery,” Applied Energy ,vol. 206,pp. 451-457, 2017.
[9]D.S. Aaron, Q. Liu, Z. Tang, G.M. Grim, A.B. Papandrew, A. Turhan, T.A. Zawodzinski, M.M. Mench, “Dramatic performance gains in vanadium redox flow batteries through modified cell architecture,” Journal of Power Sources,vol. 206,pp. 450-453, 2012.
[10]L. Wei, T.S. Zhao, G. Zhao, L. An, L. Zeng, “A high-performance carbonnanoparticle-decorated graphite felt electrode for vanadium redox flow batteries,” Applied Energy, vol. 176, pp. 74-79, 2016.
[11]A.M. Pezeshki , J.T. Clement , G.M. Veith , T.A. Zawodzinski , M.M. Mench, “High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation,” Journal of Power Sources, vol. 294, pp. 333-338, 2015.
[12]M. Maharjan , A. Bhattarai , M. Ulaganathan , N. Wai ,M.O. Oo , J.Y. Wang , T.M. Lim , “High surface area bio-waste based carbon as a superior electrode vanadium redox flow battery,” Journal of Power Sources, vol. 362, pp. 50-56, 2017.

[13]Q. Xu, T.S. Zhao, C. Zhang, “Performance of a vanadium redox flow battery with and withoutflow fields,” Electrochimica Acta, vol. 142, pp. 61-67, 2014.
[14]S. Kumar, S. Jayanti, “Effect of flow field on the performance of an all-vanadium redox flow battery,” Journal of Power Sources, vol 307, pp. 782-787, 2016.
[15]X.L. Zhou, T.S. Zhao , L. An, Y.K. Zeng, X.B. Zhu, “Performance of a vanadium redox flow battery with a VANADion membrane,” Applied Energy, vol. 180, pp. 353-359, 2016.
[16]C. Jia, J. Liu, C. Yan, “A significantly improved membrane for vanadium redox flow battery,” Journal of Power Sources, vol 195, pp. 4380-4383, 2010.
[17]J. Xi, Z. Wu, X. Qiu , L. Chen, “Nafion/SiO2 hybrid membrane for vanadium redox flow battery,” Journal of Power Sources, vol. 166, pp. 531-536, 2007.
[18]D. Chen , M.A. Hickner , E. Agar , E.C. Kumbur, “Optimizing membrane thickness for vanadium redox flow batteries,” Journal of Membrane Science, vol. 437, pp. 108-113, 2013.
[19]X. Ma, H. Zhang, C. Sun, Y. Zou, T. Zhang, “An optimal strategy of electrolyte flow rate for vanadium redox flow battery,” Journal of Power Sources, vol. 203, pp. 153-158, 2012.
[20]C.Y. Ling , H. Cao , M.L. Chng , M. Han , E. Birgersson, “Pulsating electrolyte flow in a full vanadium redox battery,” Journal of Power Sources, vol. 294, pp. 305-311, 2015.
[21]T. Wang , J. Fu , M. Zheng , Z. Yu , “Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries,” Energy Procedia, vol. 105, pp. 4482 -4491, 2017.
[22]S. Konig , M.R. Suriyah, T. Leibfried, “Innovative model-based flow rate optimization for vanadium redox flow batteries,” Journal of Power Sources, vol. 333, pp. 134-144, 2016.
[23]Y. Li, X. Zhang, J. Bao , M. Skyllas-Kazacos, “Studies on optimal charging conditions for vanadium redox flow batteries,” Journal of Energy Storage, vol. 11, pp. 191-199, 2017.
[24]Y. Wen, Y. Xu, J. Cheng, G. Cao, Y. Yang, “Investigation on the stability of electrolyte in vanadium flow batteries,” Electrochimica Acta, vol. 96, pp. 268-273, 2013.
[25]S. Roe, C. Menictas, and M. Skyllas-Kazacosa,“A high energy density vanadium redox flow battery with 3 M vanadium electrolyte,” Journal of The Electrochemical Society, vol. 163, no. 1, pp. A5023-A5028, 2016.
[26]V. Viswanathan, A. Crawford, D. Stephenson, S. Kim,W. Wang, B. Li, G. Coffey, E. Thomsen, G. Graff, P. Balducci,M. Kintner-Meyer, V. Sprenkle,“Cost and performance model for redox flow batteries,” Journal of Power Sources, vol. 247, pp.1040-1051, 2014.
[27]X. Zhang, Y. Li, M. Skyllas-Kazacos and J. Bao,“Optimal sizing of vanadium redox flow battery systems for residential applications based on battery electrochemical characteristics,” Energies, vol. 857, no. 9, 2016.
[28]F. Xing, H. Zhang, X. Ma “Shunt currents loss of the vanadium redox flow battery,” Journal of Power Sources , vol. 196, pp. 10753-10757, 2011.
[29]H. Fink, M. Remy, “Shunt currents in vanadium flow batteries: Measurement, modelling and implications for efficiency,” Journal of Power Sources , vol. 284, pp. 547-553, 2015.
[30]F.T. Wandschneider , S. Röhm , P. Fischer , K. Pinkwart , J. Tübke , H. Nirschl , “A multi-stack simulation of shunt currents in vanadium redox flow batteries,” Journal of Power Sources , vol. 261, pp. 64-74, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top