跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 22:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋欣芸
研究生(外文):Sin-Yun Song
論文名稱:磁性研磨法精加工鋁圓柱面之研究
論文名稱(外文):Studies of Magnetic Abrasive Finishing on the Aluminum Cylindrical Surface
指導教授:李榮宗李榮宗引用關係邱源成
指導教授(外文):Rong-Tsong LeeYuang-Cherng Chiou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:129
中文關鍵詞:臥式磁刷單邊磁極模組磁性研磨法鋁合金
外文關鍵詞:Aluminum alloyHorizontal magnetic brushOne-sided magnetic pole moduleMagnetic abrasive finishing
相關次數:
  • 被引用被引用:2
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  本研究設計單邊磁極模組之磁性研磨裝置,此磁極所吸附之鐵粉會隨著磁力線排列成臥式磁刷。使用此磁極模組對Al 6061鋁合金進行磁性研磨。在靜態與動態下,探討磁刷成型方式、鐵粉量、負荷對鐵粉與工件的接觸面積之影響。另探討乾式與濕式磁刷(水性切削液或煤油),以及循環水性切削液混合氧化鋁磨粒(定點或往復加工),對鋁合金工件的表面粗糙度之影響。並利用光學顯微鏡觀察鋁合金工件以及磁刷的表面,以選擇最適合磁性研磨鋁合金之方式。
在靜態實驗得知,當磁刷為自然成型時,接觸面積隨負荷增加而變大;當磁刷為事先定型時,接觸面積與負荷無關,而為一定值。在動態實驗得知,當磁刷為事先定型時,接觸面積隨著鐵粉量或負荷增加而變大。
在使用乾式磁刷加工的實驗得知,當加工負荷較小時,鐵顆粒鑲嵌於工件表面的情況越少。另外,不論濕式磁刷為水性切削液或煤油,加工後之工件表面皆有黏附磨耗,且發現有鋁屑填塞於磁刷上。
  在循環水性切削液混合氧化鋁磨粒進行定點加工的實驗得知,在加工時間5分鐘時出現鐵顆粒鑲嵌於工件表面的情況,且磁刷表面已有鋁屑填塞。在往復加工的實驗得知,於含有1 μm氧化鋁磨粒的加工液中,使用負荷0.1 N加工8分鐘後,鋁合金工件的表面粗糙度從Ra = 0.197 µm、Rmax = 1.603 µm下降至Ra = 0.089 µm、Rmax = 0.947 µm。
  This study designs a magnetic abrasive finishing device with a one-sided magnetic pole module, and iron powders adsorbed by the magnetic pole are arranged into a horizontal magnetic brush along with the magnetic lines of force. The 6061 aluminum alloy is finished using this module. Under the static and dynamic conditions, the effects of the magnetic brush forming method, the amount of iron powder and the load on the contact area between the iron powder and the workpiece is discussed. In addition, the effects of dry and wet magnetic brushes (aqueous cutting fluid or kerosene), and circulating cutting fluid mixed alumina abrasive grains (fixed-point or reciprocating finishing) on the surface roughness of aluminum alloy workpieces are investigated. The surface of the aluminum alloy workpiece and the magnetic brush are observed using an optical microscope to choose the most suitable method for magnetically grinding the aluminum alloy.
  In the static experiments, when the magnetic brush is naturally formed, the contact area increases with increasing load. When the magnetic brush is pre-shaped, the contact area achieves a constant value and independent of the load. In the dynamic experiments, when the magnetic brush is pre-shaped, the contact area increases along with the amount of iron powder and load.
  In the finishing experiments using the dry magnetic brush, when the load is small, the less the iron particles are embedded on the surface of the workpiece. In addition, regardless of whether the wet magnetic brush is an aqueous cutting fluid or kerosene, the adhesion wear can be observed on the surface of the workpiece after finishing, and aluminum scrap is embedded on the magnetic brush.
  In the fixed-point finishing experiments using circulating cutting fluid mixed alumina abrasive grains, iron particles were embedded on the surface of the workpiece at a finishing time of 5 minutes, and the surface of the magnetic brush was filled with aluminum chips. In the reciprocating finishing experiments using a fluid containing 1 μm alumina abrasive with a load of 0.1 N, the surface roughness of the aluminum alloy workpiece decreases from Ra = 0.197 μm, Rmax = 1.603 μm to Ra = 0.089 μm, and Rmax = 0.947 μm at a finishing time of 8 minutes.
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖次 viii
表次 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.2.1磁性研磨法 4
1.2.2電解複合磁性研磨法 12
1.2.3鋁合金的特性和拋光方法 15
1.3 研究目的 22
第二章 實驗裝置與實驗方法 23
2.1 磁性研磨實驗裝置 23
2.1.1 多軸運動式電解複合磨粒拋光機系統 23
2.1.2 工件旋轉與往復運動模組 25
2.1.3 工具之施力模組 27
2.1.4 加工液循環系統 29
2.2 實驗資料量測設備 30
2.3 實驗材料之特性與幾何形狀 31
2.3.1 工件材料與幾何形狀 31
2.3.2 工件之量測治具 33
2.3.3 磁極模組 34
2.3.4加工液 37
2.4 實驗材料的前處理 39
2.4.1 鋁合金工件 39
2.4.2 磁極模組之磁刷 39
2.5 實驗步驟 41
第三章 實驗結果與討論 43
3.1靜態的鐵粉狀態 43
3.1.1磁刷成型方式之影響 44
3.1.2鐵粉量的效應 45
3.2動態的鐵粉狀態 50
3.2.1鐵粉量與負荷之影響 52
3.2.2時間效應 55
3.2.3動靜態對接觸面積之比較 56
3.3磁性研磨之不同加工方式 57
3.3.1使用純鐵粉加工 57
3.3.2使用鐵粉混和水性切削液加工 62
3.3.3使用鐵粉混和煤油加工 65
3.3.4使用鑽石膏磨粒加工 70
3.3.5使用循環水性切削液混合氧化鋁磨粒定點加工 73
3.3.6不同加工方式之比較 78
3.3.7使用循環水性切削液混合氧化鋁磨粒往復加工 83
3.3.8不同粒徑之氧化鋁磨粒對表面粗糙度之影響 94
第四章 結果與未來研究方向 104
4.1 結論 104
4.2 未來研究方向 106
參考文獻 107
附錄-使用圓柱形磁鐵加工鋁合金圓柱面 111
1.1實驗材料之特性與幾何形狀 111
1.1.1 工件材料與幾何形狀 111
1.1.2磁極工具與立式磁刷 112
1.2實驗步驟 113
1.3使用圓柱形磁鐵加工鋁合金圓柱面 114
[1]Shinmura, Takazawa and Hatano, “Study on Magnetic-abrasive Finishing (1st Report)-On Process Principle and a Few Finishing Characteristics”, The Japan Society for Precision Engineering, Vol.52 (1986) 851-857.
[2]進村武男、山口瞳,“圓筒形磁性研磨法的研究-磁性磨粒的行為和研磨壓力產生機制”,日本精密工學會誌,Vol.62 (1996) 258-259。
[3]Shinmura, Takazawa, Hatano and Aizawa, “Study on Magnetic-abrasive Finishing (2nd Report) – Finishing Characteristics”, The Japan Society for Precision Engineering, Vol.52 (1986) 1761-1767.
[4]進村武男、波田野栄十,“磁性研磨法的研究-利用永久磁鐵的研磨裝置之試製”,日本精密工學會誌,Vol.53 (1987) 497-500。
[5]Shinmura, “Development of Magnetic Abrasive Finishing Apparatus using Vibratory Magnetic Poles and Its Finishing Performance”, Journal of the Japan Society for Precision Engineering, Vol.54 (1988) 2170-2175.
[6]Jain, Kumar, Behera and Jayswal, “Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process”, Wear, Vol.250 (2001) 384-390.
[7]Chang, Yan and Hsu, “Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives”, International Journal of Machine Tools & Manufacture, Vol.42 (2002) 575-583.
[8]Wang and Lee, “Study the characteristics of magnetic finishing with gel abrasive”, International Journal of Machine Tools & Manufacture, Vol.49 (2009) 1063-1069.
[9]蔡東憲、張浮明和江昇翰,“壓克力磁力研磨加工特性之研究”,修平學報,第二十三期 (2011) 189-202。
[10]鄒艶華,“使用磁鐵工具精加工彎管內表面之研究”,2015年度精密工學會春季大會學術講演會講演論文集,J24,593-594。
[11]鄒艶華和藤原健太,“使用磁性研磨法精密加工樹脂管的內外表面的研究”, 2016年度精密工學會春季大會學術講演會講演論文集,M31,801-802。
[12]鄒艶華,“使用磁性加工夾具之內部磁場輔助加工法的研究”,2016年度精密工學會秋季大會學術講演會講演論文集,L13,613-614。
[13]Kimi and Chou, “Development of the magneto-electrolytic-abrasive polishing system (MEAPS) and finishing characteristics of a Cr-coated roller”, Int. L Msda. Tools Mlmufset, Vol.37, No.7 (1997) 997-1006.
[14]Yan, Geeng-Wei Chang, Tsung-Jen Cheng and Hsu, “Electrolytic magnetic abrasive finishing”, International Journal of Machine Tools & Manufacture, Vol.43 (2003) 1355-1366.
[15]張耿維,“磁力研磨與電解磁力研磨之拋光特性研究”,國立中央大學機械 工程研究所博士論文(2003)。
[16]鄒艶華和朴龍建,“電解複合平面磁性磨粒研磨法的研究”,2014年度精密工學會春季大會學術講演會講演論文集,I46,691-692。
[17]Silva, Shimizu, Kobayashi, Skeldon, Thompson and Wood, “On the nature of the mechanically polished aluminium surface”, Corrosion Science, Vol.37, No.9 (1995) 1511-1514.
[18]Kuo and Tsai, “Effects of alumina and hydrogen peroxide on the chemical-mechanical polishing of aluminum in phosphoric acid base slurry”, Materials Chemistry and Physics, Vol.69 (2001) 53-61.
[19]Yonehara, Matsui, Kihara, Isono, Kijima and Sugibayashi, “Experimental Relationships between Surface Roughness, Glossiness and Color of Chromatic Colored Metals”, Materials Transactions, Vol. 45, No.4 (2004) 1027-1032.
[20]Yonehara1, Kihara, Kagawa, Isono and Sugibayashi, “Effect of Topography on Glossiness and Surface Color for a 5052 Aluminum Alloy”, Materials Transactions, Vol.46, No.10 (2005) 2197-2203.
[21]El-Axira, Othmanb and Abodienac, “Study on the inner surface finishing of aluminum alloy 2014 by ball burnishing process”, Journal of materials processing technology, Vol.202 (2008) 435-442.
[22]Shih, Wei and Huang, “Optical properties of anodic aluminum oxide films on Al1050 alloys”, Surface and Coatings Technology, Vol.202 (2008) 3298-3305.
[23]Maa, Li and Liang, “Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions”, Corrosion Science, Vol.51 (2009) 713-718.
[24]Skubal and Walters, “Chemical polishing of aluminum coupons in support of vacuum chambers”, Vacuum, Vol.96 (2013) 1-6.
[25]Aggerbeck, Canulescu, Dirscherl, Johansen, Engberg, Schou and Ambat, “Appearance of anodised aluminium: Effect of alloy composition and prior surface finish”, Surface & Coatings Technology, Vol.254 (2014) 28-41.
[26]Liu, Guo, Jiang, Qu and Li, “A study of processing Al 6061 with electrochemical magnetic abrasive Finishing”, Procedia CIRP, Vol.14 (2014) 234-238.
[27]Muhamad和鄒艶華,“複合電解之新的内面磁性研磨法之研發”,2014年度精密工學會春季大會學術講演會講演論文集,I48,469-470。
[28]Yuan, Qi and Wen, “Numerical and experimental study on the spiral-rotating abrasive flow in polishing of the internal surface of 6061 aluminium alloy cylinder”, Powder Technology, Vol.302 (2016) 153-159.
[29]Sepúlveda, Quintero, Castaño and Echeverría, “Improved two-step Brytal process for electropolishing of aluminum alloys”, Corrosion Science, Vol.136 (2018) 386-392.
[30]蔡芯穎,“使用導電高分子工具於電解複合研磨的鋼之表面特性研究”,國立中山大學機械與機電工程研究所碩士論文(2011)。
[31]李昱,“使用導電高分子工具電解複合磨粒拋光純鋁圓柱面之研究”,國立中山大學機械與機電工程研究所碩士論文(2015)。
[32]陳煥濱,“使用線上電解削銳的導電高分子工具電解複合磨粒拋光純鋁圓桿之研究”,國立中山大學機械與機電工程研究所碩士論文(2017)。
[33]彭康霖,“電解液和磨粒對純鋁表面的電解複合磨粒拋光特性之影響”,國立中山大學機械與機電工程研究所碩士論文(2018)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊