跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李政德
研究生(外文):LI, ZHENG-DE
論文名稱:基於異接式電路之數位化雙向改良型直交流轉換裝置研製—變流器形式
論文名稱(外文):Design and Implementation of an Improved Digitally Bidirectional DC/AC Converter Based on Differential Connection Circuit—Inverter Form
指導教授:蔡國隆蔡國隆引用關係
指導教授(外文):TSAI, GO-LONG
口試委員:蔡國隆陳景然歐勝源
口試委員(外文):TSAI, GO-LONGCHEN, CHING-JANOU, SHENG-YUAN
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:119
中文關鍵詞:單相直/交流轉換主動式二倍線頻漣波消除數位化主僕式均流控制異接式電路
外文關鍵詞:Single-Phase DC/AC ConversionAPFDigital MS Current Sharing ControlDifferential Connection Circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一款可應用於家庭微電網之數位化單相直/交流電力轉換裝置,吾人針對異接式電路上較大電流應力生成問題,納入多相交錯式概念至電路中進行改良,並解決系統於整流器形式下使用平均電流控制法難以兼顧功率因數修正與二倍線頻漣波消除功能之問題。當系統操作於變流器形式時,除了具有功率密度高與元件應力低等特點,本身儲能元件亦可經由波形調變控制而達到主動式濾波效果;當系統於整流器形式時,原先兩臂的交錯式電路將形成雙獨立型之主動式濾波器,透過各別控制即可解決前述之問題。本文重點著墨在於探討所提改良型架構於變流器形式之電路特性、小信號之轉移函數推導與數學模型建立、主僕式控制迴路之設計與分析,接著,藉由DC 48V輸入、AC 110V 500W有效功率輸出之模擬電路,分別進行穩態波形、負載變動、均流控制等檢測,驗證控制系統之性能,最後,製作出實驗原型機並經過電路測試,其實驗與模擬波形之比對結果皆符合預期,且達到93.02%之二倍線頻漣波電流消除效果與兩相電感電流波峰處94.07%之平均值誤差消除效果,成功證實所提改良型電路架構之可行性。
This thesis presents an improved single-phase DC/AC converter utilized in residential microgrids system. Considered the problem about larger current stress existing in differential connection circuit, the concept of multi-phase interleaving was introduced into differential connection circuit and overcame the obstacle that both active power filter (APF) and power factor correction (PFC) functions cannot be optimized simultaneously through average current control at rectifier form. When operating at inverter form, it achieves high power density and low element stress. Also, its storage elements can achieve APF function by using waveform control. When operating at rectifier form, the two arms of interleaving circuits will shape two APF cells which can solve aforementioned problem through the separate control algorithm. This thesis is focused on inverter form of the proposed improved architecture including circuit characteristics, small-signal model establishment, and the analysis of digital master/slave (MS) control. Then, configured the simulation circuit, which DC voltage input is 48V, AC voltage output is 110V and active power output is 500W, great performance of proposed control system has been confirmed by multiple test of steady-state, load fluctuation, current-sharing. Finally, making implementation prototype of proposed architecture and its feasibility has also been confirmed successfully by results of digitalized simulation and implementation such that effect of 2nd order ripple current elimination achieves 93.02% and effect of two phase inductor’s average current error elimination on peak point achieves 94.07%.
摘 要 i
ABSTRACT ii
致 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 導論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 本論文貢獻闡述 8
1.4 本論文內容綱要 9
第二章 改良型架構之特性分析 10
2.1 改良型電路架構 10
2.1.1 工作模式 10
2.1.2 變流/整流器形式 12
2.2 交錯式升壓型轉換器之穩態等效電路分析 13
2.2.1 電路時序圖與行為探討 14
2.2.2 操作於不同責任週期之狀態變數關係 18
2.2.3 直流電壓轉移函數 20
2.2.4 各元件直流電流關係與電感電流漣波推導 21
2.3 變流器形式之穩態電路時域分析 22
2.3.1 各元件時域波形探討 22
2.3.2 波形控制函數推導 25
2.4 變流器形式之元件應力分析 28
2.4.1 各元件電壓應力推導 28
2.4.2 各元件電流應力推導 29
2.4.3 應力彙整表 36
第三章 數位控制系統之設計與分析 38
3.1 數位控制介紹 38
3.2 數位控制迴路運作與設計方法 39
3.2.1 連續域控制器選用與特性分析 40
3.2.2 離散化轉換方法 43
3.2.3 數位濾波器設計 45
3.3 控制技術類型探討 47
3.3.1 磁滯電流控制法 47
3.3.2 峰值電流控制法 48
3.3.3 平均電流控制法 48
3.3.4 電流控制法彙整表 49
3.3.5 雙迴路平均控制應用 50
3.4 本文主僕式控制系統設計 51
3.4.1 受控體轉移函數分析 52
3.4.2 主電流控制迴路 65
3.4.3 僕均流控制迴路 68
3.4.4 主電壓控制迴路 71
3.5 變流器形式之控制系統架構建立 75
第四章 數位控制系統之實現 76
4.1 微控制晶片選用與特色 76
4.2 所用晶片功能區塊介紹 77
4.3 數位脈衝寬度調變策略 79
4.4 同步取樣策略與例行中斷時機 81
4.5 數位控制器實現 83
4.6 軟體規劃佈局 86
第五章 系統驗證 88
5.1 模擬電路建立與控制系統性能檢測 88
5.1.1 穩態波形模擬測試 90
5.1.2 負載變動模擬測試 94
5.1.3 均流控制模擬測試 96
5.2 實驗平台架設與原型機測試比對 98
5.2.1 穩態波形實驗結果 100
5.2.2 均流控制實驗結果 105
第六章 結論與未來研究展望 108
6.1 結論 108
6.2 未來研究展望 110
參考文獻 111
符號彙編 117
作者簡介 119

[1]A. Shahid, “Performance Evaluation of Sinusoidal and Space Vector Pulse-Width-Modulation for Power Quality Enhancement in Distributed Generation Systems, ” IEEE International Symposium on Power Electronics for Distributed Generation Systems, pp.1-5, Jun. 2015.
[2]W. Chae, J. Kim, J. Cho and J. Park, “Optimal Interconnection Device for Distributed Energy Resources of Customer, ” IEEE International Symposium on Power Electronics for Distributed Generation Systems, pp. 878-882, Aug. 2012.
[3]E. S. Kang, S. J. Pee, J. E. Song and J. W. Jang, “A Blockchain-Based Energy Trading Platform for Smart Homes in a Microgrid, ” IEEE International Conference on Computer and Communication Systems, pp. 472-476, Apr. 2018.
[4]J. H. Kim, K. Y. Choi and R. Y. Kim, “A Low Frequency Input Current Reduction Scheme of a Two-Stage Single-Phase Inverter with DC-DC Boost Converter,” IEEE Applied Power Electronics Conference and Exposition, pp. 2351-2358, Apr. 2014.
[5]Y. Du, D. D. C. Lu, G. M. L. Chu and W. Xiao, “Closed-Form Solution of Time-Varying Model and Its Applications for Output Current Harmonics in Two-Stage PV inverter,” IEEE Transactions on Sustainable Energy, vol. 6, no. 1, pp. 142-150, Jan. 2015.
[6]G. Ding, F. Gao, H. Tian, C. Ma, M. Chen, G. He and Y. Liu, “Adaptive DC-Link Voltage Control of Two-Stage Photovoltaic Inverter During Low Voltage Ride-Through Operation,” IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4182-4194, Aug. 2016.
[7]W. Duan, F. Gao, Y. Xie and M. Chen “Model Predictive Control of Two-Stage Inverter with Less Switching Losses and DC-Link Capacitor Current,” IEEE International Power Electronics and Motion Control Conference, pp. 2085-2091, Jul. 2016.
[8]T. Mu, L. Zhu, H. Wu and W. Jiang, “A Semi-Two-Stage DC-AC Power Conversion System with Improved Efficiency Based on a Dual-Input Inverter,” IEEE Energy Conversion Congress and Exposition, pp. 1-6, Sep. 2016.
[9]M. A. Moftah, G. E. Saady and E. N. A. Ibrahim, “Active Power Filter for Power Quality Enhancement of Photovoltaic Renewable Energy Systems,” IEEE Saudi Arabia Smart Grid Conference, pp. 1-9, Dec. 2016.
[10]A. Elallali, A. A. C. Taghzaoui, Y. Mchaouar, A. Hamdoun and I. Lachkar, “Nonlinear Control of a Single Phase Shunt Active Filter Connected Photovoltaic Systems via Sliding Mode,” IEEE International Conference on Electrical and Electronic Engineering, pp. 56-61, May 2018.
[11]G. R. Zhu, S. C. Tan, Y. Chen and C. K. Tse, “Mitigation of Low-Frequency Current Ripple in Fuel-Cell Inverter Systems Through Waveform Control,” IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 779-792, Feb. 2013.
[12]Y. Xia, J. Roy and R. Ayyanar, “Lifetime Estimation of DC-Link Capacitors in a Single-Phase Converter with an Integrated Active Power Decoupling Module,” IEEE Transactions on Industrial Electronics, vol. 32, no. 7, pp. 5188 - 5201, Aug. 2017.
[13]R. J. Wai and C. Y. Lin, “Dual Active Low-Frequency Ripple Control for Clean-Energy Power-Conditioning Mechanism,” IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5172-5185, Mar. 2011.
[14]Y. Tang and F. Blaabjerg, “A Component-Minimized Single-Phase Active Power Decoupling Circuit With Reduced Current Stress to Semiconductor Switches,” IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 2905-2910, Nov. 2015.
[15]H. Li, K. Zhang, H. Zhao, S. Fan and J. Xiong, “Active Power Decoupling for High-Power Single-Phase PWM Rectifiers,” IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1308-1319, Jul. 2013.
[16]Y. Sun, Y. Liu, M. Su, W. Xiong and J. Yang, “Review of Active Power Decoupling Topologies in Single-Phase Systems,” IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4778-4794, Sep. 2016.
[17]R. Wang, F. Wang, D. Boroyevich, R. Burgos, R. Lai, P. Ning and K. Rajashekara, “A High Power Density Single-Phase PWM Rectifier with Active Ripple Energy Storage,” IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1430-1443, Sep. 2011.
[18]C. T. Lee, Y. M. Chen, L. C. Chen and P. T. Cheng, “Efficiency Improvement of a DC/AC Converter with The Power Decoupling Capability,” IEEE Applied Power Electronics Conference and Exposition, pp. 1462-1468, Mar. 2012.
[19]X. Cao, Q. C. Zhong and W. L. Ming, “Ripple Eliminator to Smooth DC-Bus Voltage and Reduce The Total Capacitance Required,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2224-2235, Aug. 2015.
[20]P. T. Krein, R. S. Balog and M. Mirjafari, “Minimum Energy and Capacitance Requirements for Single-Phase Inverters and Rectifiers Using a Ripple Port,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4690-4698, Feb. 2012.
[21]R. Chen, Y. Liu, P. Taskas and F. L. Peng, “A Solid State Variable Capacitor with Minimum DC Capacitance,” IEEE Applied Power Electronics Conference and Exposition, pp. 109-114, Mar. 2015.
[22]S. Fan, Y. Xue and K. Zhang, “Novel Active Power Decoupling Method for Single-Phase Photovoltaic or Energy Storage Applications,” IEEE Energy Conversion Congress and Exposition, pp. 2439-2446, Sep. 2012.
[23]G. R. Zhu, S. C. Tan, Y. Chen and C. K. Tse, “Mitigation of Low-Frequency Current Ripple in Fuel-Cell Inverter Systems Through Waveform Control,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 779-792, Jun. 2013.
[24]H. Wu, T. Mu, H. Ge and Y. Xin, “Full-Range Soft-Switching-Isolated Buck-Boost Converters with Integrated Interleaved Boost Converter and Phase-Shifted Control,” IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 987-999, Apr. 2016.
[25]M. C. Ancuti, M. Svoboda, S. Musuroi, A. Hedes, N. V. Olarescu and M. Wienmann, “Boost Interleaved PFC Versus Bridgeless Boost Interleaved PFC Converter Performance/Efficiency Analysis,” IEEE International Conference on Applied and Theoretical Electricity, pp. 1-6, Oct. 2014.
[26]C. Marxgut, J. Biela and J. W. Kolar, “Interleaved Triangular Current Mode (TCM) Resonant Transition, Single Phase PFC Rectifier with High Efficiency and High Power Density,” IEEE International Power Electronics Conference, pp. 1725-1732, Jun. 2010.
[27]K. Peng, X. Xie and J. Li, “Low Cost Digital-analog Hybrid Controlled Photovoltaic Battery Charger Based on Interleaved BCM Boost Converter and Improved MPPT Algorithm,” IEEE Energy Conversion Congress and Exposition, pp. 4980-4984, Sep. 2015.
[28]C. Chen, C. Wang and F. Hong, “Research of an Interleaved Boost Converter with Four Interleaved Boost Convert Cells,” IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics, pp. 396-399, Jun. 2009.
[29]M. S. Fadali and A. Visioli, Digital Control Engineering Analysis and Design, USA, Academic Press, 2009, pp.2-6.
[30]Franklin, Powell, Workman, Michael L., Digital Control of dynamic systems, USA, A. Wesley, 1997, pp.3-10.
[31]A. V. Peterchev and S. R. Sanders, “Quantization Resolution and Limit Cycling in Digitally Controlled PWM Converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp.301-308, Mar. 2003.
[32]D. M. Van de Sype, K. De Gusseme, A. P. Van den Bossche and J. A. A. Melkebeek, “A Sampling Algorithm for Digitally Controlled Boost PFC Converters,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 649-657, Feb. 2004.
[33]L. Zhengnan, C. Qing, H. Xin and S. Kongming, “A New Method to Suppress The Limit Cycle of PWM Inverter,” IEEE China International Electrical and Energy Conference, pp. 687-692, Oct. 2017.
[34]S. R. Angadi, Nanjundaswamy. R., N. R. Srinivas and R. S. Ananda Murthy, “A Hysteresis Current Control based Shunt Current Compensation Scheme for Power Quality Improvement in High Power Radiology Applications,” IEEE International Conference on Power and Advanced Control Engineering, pp. 53-58, Aug. 2015.
[35]M. Ebrahimi and S. A. Khajehoddin, “Fixed-Frequency Generalized Peak Current Control (GPCC) for Inverters,” IEEE Applied Power Electronics Conference and Exposition, pp. 3207-3212, Mar. 2016.
[36]L. Wang, Q. H. Wu, W. H. Tang, Z. Y. Yu and W. Ma, “CCM-DCM Average Current Control for Both Continuous and Discontinuous Conduction Modes Boost PFC Converters,” IEEE Electrical Power and Energy Conference, pp. 1-6, Oct. 2017.
[37]Y. K. Chen, T. F. Wu, Y. E. Wu and C. P. Ku, “A Current-Sharing Control Strategy for Paralleled Multi-Inverter Systems Using Microprocessor-Based Robust Control,” IEEE International Conference on Electrical and Electronic Technology, pp. 647-653, Aug. 2001.
[38]J. F. Chen and C. L. Chu, “Combination Voltage-Controlled and Current-Controlled PWM Inverters for UPS Parallel Operation,” IEEE Transactions on Power Electronics, vol. 10, no. 5, pp. 547-558, Sep. 1995.
[39]J. M. Guerrero, L. Hang and J. Uceda, “Control of Distributed Uninterruptible Power Supply Systems,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 2845 - 2859, Jul. 2008.
[40]Y. Huang and C. K. Tse, “On the Effects of Voltage Loop in Paralleled Converters Under Master-Slave Current Sharing,” IEEE International Power Electronics and Motion Control Conference, pp. 1-5, Aug. 2006.
[41]H. H. C. Iu and C. K. Tse, “Instability and Bifurcation in Parallel-Connected Buck Converters under a Master-Slave Current Sharing Scheme,” IEEE Power Electronics Specialists Conference, pp. 708-713, Aug. 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top