[1]A. Skoog and J. J. Leary, Principles of Instrumental Analysis, 4th ed. Philadelphia: Saunders College Publishing, 1992.
[2]黃炳照、莊睦賢,電化學感測器,化工技術,第七卷,第二期,1999。[3]J. P. Chambers, B. P. Arulanandam, L. L. Matta, A. Weis and J. J. Valdes, Current Issues in Molecular Biology, 2008, 10, 1-12.
[4]陳詩喆,電流式葡萄糖生物感測器之製備及測試,國立台灣科技大學化學工程研究所碩士論文,2009。[5]Medical Electronics Laboratory
http://melab.snu.ac.kr/melab/lib/exe/detail.php?id=research%3Aresearch.in.melab%3Abiosensor&cache=cache&media=data:%EB%B0%94%EC%9D%B4%EC%98%A4.%EC%84%BC%EC%84%9C.1.jpg
[6]P. Saber, W. Lund, Talanta, 1982, 29, 457.
[7]J. Wang, D. L. Hutchins-Kumar, Analytical Chemistry, 1986, 58, 402.
[8]R. P. Baldwin, K. N. Thomsen, Talanta, 1991, 38, 1.
[9]R. W. Murray, A. G. Ewing, R. A. Durst, Analytical Chemistry, 59, 1987, 379.
[10]W. M. Damien, Analyst, 1994, 119, 1953.
[11]R. W. Murry, Accounts of Chemical Research, 1980, 13, 135.
[12]K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat Mater, vol. 6, 2007, pp.183-191.
[13]Nature Materials 9, 2010, 840.
[14]蘇清源,石墨烯氧化物之特性與應用前景,物理雙月刊,2011。[15]Nelson, JM, Chiller, TM, Powers, JH, Angulo, FJ. “Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story,” Clin Infect Dis. 2007, 44, 977–80.
[16]Kawahara, S. “Chemotherapeutic agents under study,” Nippon Rinsho. Dec 1998, 56, 3096–3099.
[17]Samuel P. Kounaves, Tufts University Department of Chemistry, Voltammetric Techniques, Chapter 37.
[18]呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學 研究所碩士論文,2003。
[19]Bard, A.J., Faulkner, L.R., “Electrochemical methods:Fundamentals and applications.” New York :John Wiley&Sons,2nd Edition ,2000.
[20]李昌厚,紫外可見分光光度計,北京:化學工業出版社,2005,第16-60頁。
[21]趙傑. 《材料科學基礎》. 大連理工大學出版社. 2010年3月第45頁
[22]林麗娟, 工業材料研究所, 工業材料, 86期
[23]東邦化學, http://www.tohokaken-cat.jp/pic/photo_analysis/eds_theory.jpg
[24]Marák J, Staňová A, Vaváková V, Hrenáková M, Kaniansky D. “On-line capillary isotachophoresis–capillary zone electrophoresis analysis of bromate in drinking waters in an automated analyzer with coupled columns and photometric detection.” J Chromatogr A. 2012, 1267, 252–258.
[25]Saraji M, Khaje N, Ghani M. “Cetyltrimethylammonium-coated magnetic nanoparticles for the extraction of bromate, followed by its spectrophotometric determination.” Microchim Acta. 2014, 181, 925–933.
[26]Oliveira SM, Oliveira HM, Segundo MA, Rangel AOSS, Lima JLFC, Cerdà V. “Automated solid-phase spectrophotometric system for optosensing of bromate in drinking waters.” Anal. Methods. 2012, 4, 1229–1236.
[27]Mao R, Zhao X, Lan H, Liu H, Qu J. “Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor. ” Water Res. 2015, 77, 1–12.
[28]Zhang J, Yang X. “A simple yet effective chromogenic reagent for the rapid estimation of bromate and hypochlorite in drinking water.” Analyst. 2013, 138, 434–437.
[29]Romele L. “Spectrophotometric determination of low levels of bromate in drinking water after reaction with fuchsin.” Analyst. 1998, 123, 291-294.
[30]Cavalli S, Polesello S, Valsecchi S. “Chloride interference in the determination of bromate in drinking water by reagent free ion chromatography with mass spectrometry detection.” J Chromatogr A. 2005, 1085, 42-46.
[31]Snyder SA, Vanderford BJ, Rexing DJ. “Trace analysis of bromate, chlorate, iodate, and perchlorate in natural and bottled waters.” Environ Sci Technol. 2005, 39, 4586-4593.
[32]Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E. “Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host−guest inclusion for enhanced electrochemical performance.” ACS Nano. 2010, 4, 4001–4010.
[33]Papagiannia GG, Stergioua DV, Armatasb GS, Kanatzidisc MG, Prodromidis MI. “Synthesis, characterization and performance of polyaniline–polyoxometalates (XM12, X = P, Si and M = Mo, W) composites as electrocatalysts of bromates.” Sensor Actuat B-Chem. 2012, 173, 346–353.
[34]Qi H, Zhang C, Li X. “Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin.” Sensor Actuat B-Chem. 2006, 114, 364–370.
[35]Li J, Mei H, Zheng W, Pan P, Sun XJ, Li F, Guo F, Zhou HM, Ma JY, Xu XX, Zheng YF. “A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers.” Colloid Surface B. 2014, 118, 77–82.
[36]Vilian ATE, Chen SM, Kwak CH, Hwang SK, Huh YS, Han YK. “Immobilization of hemoglobin on functionalized multiwalled carbon nanotubes-Poly-L-Histidine-zinc oxide nanocomposites toward the detection of bromate and H2O2.” Sensor Actuat B. 2016, 224, 607–617.
[37] Xu J, Liu C, Wu Z. “Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film.” Microchim Acta. 2011, 172, 425–430.
[38]Zhao H, Ji X, Wang B, Wang N, Li X, Ni R, Ren J. “An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian bluechitosan nanocomposites for organophosphorus pesticides detection.” Biosens Bioelectron. 2015, 65, 23–30.
[39]Geim AK, Novoselov KS. “The rise of graphene.” Nat Mater. 2007, 6, 183.
[40]Khan M, Tahir MN, Adil SF, Khan HU, Siddiqui MRH, Al-warthan AA, Treme W. “Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications.” J Mater Chem A. 2015, 3, 18753–18808.
[41]Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL. “Graphene for electrochemical sensing and biosensing.” Trac-Trend Anal Chem. 2010, 29, 954–965.
[42]Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. “Graphene Based Electrochemical Sensors and Biosensors: A Review.” Electroanal. 2010, 22, 1027–1036.
[43]Wu S, He Q, Tan C, Wang Y, Zhang H. “Graphene-Based Electrochemical Sensors.” Small. 2013, 9, 1160–1172.
[44]Zhou W, Li W, Xie Y, Wang L, Pan K, Tian G, Li M, Wang G, Qu Y, Fu H. “Fabrication of noncovalently functionalized brick-like β-cyclodextrins/graphene composite dispersions with favorable stability.” RSC Adv. 2014, 4, 2813–2819.
[45]Mathapa BG, Paunov VN. “Cyclodextrin stabilised emulsions and cyclodextrinosomes.” Phys Chem Chem Phys. 2013, 15, 17903–17914.
[46]Palanisamy S, Sakthinathan S, Chen SM, Thirumalraj B, Wu TH, Lou BS, Liu XH. “Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine.” Carbohyd Polym. 2016, 135, 267-273.
[47]Palanisamy S, Cheemalapati S, Chen SM. “Highly sensitive and selective hydrogen peroxide biosensor based on hemoglobin immobilized at multiwalled carbon nanotubes–zinc oxide composite electrode.” Anal Biochem. 2012, 429, 108–115.
[48]Ren L, Dong J, Cheng X, Xu J, Hu P. “Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite.” Microchim Acta. 2013, 180, 1333–1340.
[49]Li P, Ding Y, Lu ZY, Li Y, Zhu XS, Zhou YM, Tang YW, Chen Y, Cai CX, Lu TH. “Direct electrochemistry of hemoglobin immobilized on the water-soluble phosphonate functionalized multi-walled carbon nanotubes and its application to nitric oxide biosensing.” Talanta. 2013, 115, 228–234.
[50]Sun W, Guo Y, Ju X, Zhang Y, Wang X, Sun Z. “Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis.” Biosens Bioelectron. 2013, 42, 207–213.
[51]Palanisamy S, Karuppiah C, Chen SM, Periakaruppan P. “A Highly Sensitive and Selective Enzymatic Biosensor Based on Direct Electrochemistry of Hemoglobin at Zinc Oxide Nanoparticles Modified Activated Screen Printed Carbon Electrode.” Electroanal. 2014, 26, 1984–1993.
[52]Xie L, Xu Y, Cao X. “Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode.” Colloid Surface B. 2013, 107, 245– 250.
[53]Chen PY, Yang HH, Huang CC, Chen YH, Shih Y. “Involvement of Cu(II) in the electrocatalytic reduction of bromate on a disposable nano-copper oxide modified screen-printed carbon electrode: hair waving products as an example.” Electrochim Acta. 2015, 161, 100–107.
[54]Zhou DD, Ding L, Cui H, An H, Zhai JP, Li Q. “Fabrication of high dispersion Pd/MWNTs nanocomposite and its electrocatalytic performance for bromate determination.” Chem Eng J. 2012, 32–38.
[55]Salimia A, MamKhezri H, Hallaj R, Zandi S. “Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection.” Electrochim Acta. 2007, 52, 6097–6105.
[56]Thangamuthu R, Wu YC, Chen SM. “Silicomolybdate-incorporated-glutaraldehyde- cross-linked poly-L-lysine film modified glassy carbon electrode as amperometric sensor for bromate determination.” Electroanal. 2009, 21, 1655–1658.
[57]Marafon E, Kubota LT, Gushikem Y. “FAD-modified SiO2/ZrO2/C ceramic electrode for electrocatalytic reduction of bromate and iodate.” J Solid State Electr. 2009, 13, 377–383.
[58]Geim, A. K. & Novoselov, K.S. “The rise of graphene.” Nat. Mater. 2007, 6, 183–191.
[59]Eda, G. & Chhowalla, M. “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics.” Adv. Mater. 2010, 22, 2392–2415.
[60]Hsieh, C., Liu, Y., Roy, A. K. “Pulse electrodeposited Pd nanoclusters on graphene based electrodes for proton exchange membrane fuel cells, Electrochim.” Acta. 2012, 64, 205–210.
[61]Chang, H., Chang, C., Tsai, Y. & Liao, C. “Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor.” Carbon. 2012, 50, 2331–2336.
[62]Raj, M. A. & John, S.A. “Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal.” Chim. Acta. 2013, 771, 14–20.
[63]Wang, D., Yan, W., Vijapur, S. H. & Botte, G.G. “Electrochemically reduced graphene oxide–nickel nanocomposites for urea electrolysis.” Electrochim. Acta. 2013, 89, 732–736.
[64]Zhao, J., Pei, S., Ren, W., Gao, L. & Cheng, H. M. “Efficient preparation of large-area graphene oxide sheets for transparent conductive films.” ACS Nano. 2010, 4, 5245–5252.
[65]Zhu, Y. et al. “Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors.” Carbon. 2010, 48, 2118–2122.
[66]Cote, L. J., Silva, R. C. & Huang, J. “Flash reduction and patterning of graphite oxide and its polymer composite.” J. Am. Chem. Soc. 2009, 131, 11027–11032.
[67]Williams, G., Seger, B. & Kamat, P. V. “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide.” ACS Nano. 2008, 2, 1487–1491.
[68]Kotov, N. A., De´ka´ny, I. & Fendler, J. H. “Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states.” Adv. Mater. 1996, 8, 637–641.
[69]Wang, H., Robinson, J. T., Li, X. & Dai, H. “Solvothermal reduction of chemically exfoliated graphene sheets.” J. Am. Chem. Soc. 2009, 13, 9910–9911.
[70]Toh, S. Y., Loh, K. S., Kamarudin, S. K. & Daud, W. R. W. “Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterization.” Chem. Eng. J. 2014, 251, 422–434.
[71]Guo, H. L., Wang, X. F., Qian, Q. Y., Wang, F. B. & Xia, X. H. “A green approach to the synthesis of graphene nanosheets.” ACS Nano. 2009, 3, 2653–2659.
[72]Viinikanoja, A., Wang, Z., Kauppila, J. & Kvarnstrom, C. “Electrochemical reduction of graphene oxide and its in situ spectroelectrochemical characterization.” Phys. Chem. Chem. Phys. 2012, 14, 14003–14009.
[73]Liu, Y., Ai, K. & Lu, L. “Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields.” Chem. Rev. 2014, 114, 5057−5115.
[74]Ball, V. et al. “Deposition mechanism and properties of thin polydopamine films for high added value applications in surface science at the nanoscale.” BioNanoSci. 2012, 2, 16–34.
[75]Lynge, M. E., Westen, R., Postma, A. & Städler, B. “Polydopamine-a nature-inspired polymer coating for biomedical science.” Nanoscale. 2011, 3, 4916–4928.
[76]Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. “Mussel-inspired surface chemistry for multifunctional coatings.” Science. 2007, 318, 426–430.
[77]Lee, H. et al. “Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers.” Adv. Mater. 2008, 20, 1619–1623.
[78]Hu, W. et al. “Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker.” Anal. Chem. 2014, 86, 4488−4493.
[79]Zheng, L. et al. “Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol.” Sens. Actuators, B. 2013, 177, 344– 349.
[80]Fu, L., Lai, G., Jia, B. & Yu, “A. Preparation and electrocatalytic properties of polydopamine functionalized reduced graphene oxide-silver nanocomposites.” Electrocatalysis. 2015, 6, 72–76.
[81]Ensafi, A. A. & Heydari, E. “Determination of some phenothiazines compounds in pharmaceuticals and human body fluid by electrocatalytic oxidation at a glassy carbon electrode using methylene blue as a mediator.” Anal. Lett. 2008, 41, 2487–2502.
[82]Karimi, M. A. et al. “Electrocatalytic Determination of Chlorpromazine Drug Using Alizarin Red S as a Mediator on the Glassy Carbon Electrode.” Russ. J. Electrochem. 2011, 47, 34–41.
[83]Unnikrishnan, B., Palanisamy, S. & Chen, S. M. “A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite.” Biosens. Bioelectron. 2013, 39, 70–75.
[84]Palanisamy, S., Thangavelu, K., Chen, S. M., Thirumalraj, B. & Liu, X. H. “Preparation and characterization of gold nanoparticles decorated on graphene oxide@polydopamine composite: application for sensitive and low potential detection of catechol.” Sens. Actuators, B. 2016, 233, 5, 298–306.
[85]He, Y. et al. “Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions.” J. Mater. Chem. A. 2014, 2, 9548–9558.
[86]Qu, K., Zheng, Y., Dai, S. & Qiao, S. Z. “Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction.” Nanoscale. 2015, 7, 12598–12605.
[87]Jiang, J., Jiang, T., Wang, Y., Du, X., Wei, Z. & Zhou, H. “Facile preparation of novel Au–polydopamine nanoparticles modified by 4-mercaptophenylboronic acid for use in a glucose sensor.” RSC Adv. 2014, 4, 33658–33661.
[88]Nejad, A. G., Aguilar, L. E., Ambade, R. B. Lee, S. H., Park, C. H. & Kim. C. S. “Immobilization of silver nanoparticles on Electropolymerized polydopamine films for metal implant applications.” Colloids Interface Sci. Commun. 2015, 6, 5–8.
[89]Łukasiewicz, K. M., Tarasiewicz, H. P. & Panuszko, A. “Electrochemical oxidation of phenothiazine derivatives at glassy carbon electrodes and their differential pulse and square‐wave voltammetric determination in pharmaceuticals.” Anal. Lett. 2008, 41, 789–805.
[90]Parvin, M. H. “Graphene paste electrode for detection of chlorpromazine.” Electrochem. Commun. 2011, 13, 366–369.
[91]Unnikrishnan, B., Hsu, P. C. & Chen, S. M. “A multipurpose voltammetric sensor for the determination of chlorpromazine in presence of acetaminophen, uric acid, dopamine and ascorbic Acid.” Int. J. Electrochem. Sci. 2012, 7, 11414–11425.
[92]Bouchta, D., Izaoumen, N., Zejli, H., Kaoutit, M. E. & Temsamani, K. R. A. “Novel electrochemical synthesis of poly-3-methylthiophene--cyclodextrin film application for the analysis of chlorpromazine and some neurotransmitters, Biosens.” Bioelectron. 2005, 20, 2228–2235.
[93]Liu, F., Shao, J. & Zhao, Y. “Electrochemiluminescence detection of chlorpromazine hydrochloride at bare and graphene oxide modified glassy carbon electrodes.” Anal. Methods. 2014, 6, 6483–6487.
[94]Glassmeyer, S. T.; Furlong, E. T.; Kolpin, D. W.; Cahill, J. D. Zaugg, S. D.; Werner, S. L.; Meyer, M. T.; Kryak, D. D. “Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination.” Environ. Sci. Technol.2005, 39, 5157–5169.
[95]Beier, S.; Koster, S.; Veltmann, K.; Schroder, H. F.; Pinnekamp, J. “Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis.” Water Sci. Technol.2010, 61(7), 1691–1698.
[96]Wei, X. Y.; Wang, Z.; Fan, F. H.; Wang, J. X.; Wang, S. C. “Advanced treatment of a complex pharmaceutical wastewater by nanofiltration: Membrane foulant identification and cleaning.” Desalination. 2010, 251, 13, 167–175.
[97]Dodd, M. C.; Shah, A. D.; Von Gunten, U.; Huang, C. H. “Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: reaction kinetics, mechanisms, and transformation pathways.” Environ. Sci. Technol. 2005, 39, 7065−7076.
[98]Carlsson, G.; Orn, S.; Larsson, D. G. J. “Effluent from bulk drug production is toxic to aquatic vertebrates.” Environ. Toxicol. Chem. 2009, 28, 2656−2662.
[99]Aristilde, L.; Melis, A.; Sposito, G. “Inhibition of Photosynthesis by a Fluoroquinolone Antibiotic.” Environ. Sci. Technol. 2010, 44, 4, 1444–1450.
[100]Belden, J. B.; Maul, J. D.; Lydy, M. J. “Partitioning and photodegradation of ciprofloxacin in aqueous systems in the presence of organic matter.” Chemosphere. 2007, 66, 8, 1390–1395.
[101]Tan, Y.Y., Guo, Y., Gu, X.Y., Gu, C. “Effects of metal cations and fulvic acid on the adsorption of ciprofloxacin onto goethite.” Environ. Sci. Pollut. Res. 2015, 22, 609–617.
[102]Wang, P., He, Y.L., Huang, C.H. “Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: reaction kinetics, product and pathway evaluation.” Water Res. 2010, 44, 5989–5998.
[103]E. De Bel, J. Dewulf, H. Van Lagenhove, C. Janssen. “Influence of pH on the sonolysis of ciprofloxacin: biodegradability, ecotoxicity and antibiotic activity of its degradation products.” Chemosphere. 2009, 77, 291–295.
[104]Chen, H., Gao, B., Li, H. “Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide.” J. Hazard. Mater. 2015, 282, 201–207.
[105]J.A. de Lima Perini, M. Perez-Moya, R.F.P. “Nogueira, Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH, J. Photochem.” Photobiol. A. 2013, 259, 53–58.
[106]M. El-Kemary, H. El-Shamy, I. “El-Mehasseb, Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles.” J. Lumin. 2010, 130, 2327–2331.
[107]Z. Jiang, J. Zhu, D. Liu, W. Wei, J. Xie, and M. Chen, “In situ synthesis of bimetallic Ag/Pt loaded single-crystalline anatase TiO2 hollow nano-hemispheres and their improved photocatalytic properties,” CrystEngComm. 2014, 16, 12, 2384–2394.
[108]Z.Jiang, X. Lv, D. Jiang, J. Xie and D. Mao. “Naturalleavesassisted synthesis of nitrogen-doped, carbon-rich nanodots sensitized, Ag-loaded anatase TiO2 square nanosheets with dominant 001 facets and their enhanced catalytic applications.” Journal of Materials Chemistry A. 2013, 1, 47, 14963–14972.
[109]Sui, M.H., Xing, S.C., Sheng, L., Huang, S.H., Guo, H.G. “Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst.” J. Hazard. Mater. 2012, 227–228, 227–236.
[110]H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M. Hasnain Isa. “Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review.” J. Ind. Eng. Chem. 2015, 26, 1–36.
[111]J.A. Byrne, P.S. Dunlop, J.W. Hamilton, P. Fernandez-Ibanez, I. Polo-Lopez, P.K. Sharma, A.S. Vennard. “A review of heterogeneous photocatalysis for water and surface disinfection.” Molecules. 2015, 20, 5574–5615.
[112]E. W. Miller, A. E. Albers, A. Pralle, E. Y. Isacoff, C. J. Chang. “Boronate-Based Fluorescent Probes for Imaging Cellular Hydrogen Peroxide.” J. Am. Chem. Soc. 2005, 127, 16652−16659.
[113]S. G. Rhee. “H2O2, a Necessary Evil for Cell Signaling.” Science. 2006, 312, 1882−1883.
[114]S. A. Penkett, B. M. R. Jones, K. A. Brice, A. E. J. Eggleton. “The importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater.” Atmos. Environ. 2007, 41, 154-168.
[115]C. Laloi, K. Apel, A. Danon. “Reactive oxygen signalling: the latest news.” Curr. Opin. Plant Biol. 2004, 7, 323-328.
[116]W. Xiao, J. S. Chen, C. M. Li, R. Xu, X. W. Lou. “Synthesis, Characterization, and Lithium Storage Capability of AMoO4 (A = Ni, Co) Nanorods.” Chem. Mater. 2010, 22, 746–754.
[117]P. Tournois. “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems.” Opt. Commun. 1997, 140, 245–249.
[118]Z. Zhang, Y. Liu, Z. Huang, L. Ren, X. Qi, X. Wei, J. Zhong. “Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications.” Phys Chem Chem Phys. 2015, 17, 20795-20804.
[119]B. Senthilkumar, K. V. Sankar, R. K. Selvan, M. D. Danielle, M. Manickam. “Nano α-NiMoO4 as a new electrode for electrochemical supercapacitors.” RSC Adv. 2013, 3, 352–357.
[120]Rushbrooke, J. G.; Ansorge, R. E. “Optical Fiber Readout and Performance of Small Scintillating Crystals for a Fine- Grained Gamma Detector.” Nucl. Instrum. Methods Phys. Res., Sect A. 1989, 280, 83–90.
[121]J. H. Ryu, J. W. Yoon, C. S. Lim, W. C. Oh, K. B. Shim. “Microwave-assisted synthesis of CaMoO4 nano-powders by a citrate complex method and its photoluminescence property.” Journal of Alloys and Compounds. 2005, 390, 245–249.
[122]V.B. Mikhailik, H. Kraus. “Performance of scintillation materials at cryogenic temperatures.” Phys. Status Solidi B. 2010, 247, 1583-1599.
[123]A. S. Nasab, M. Maddahfar, S. M. H. Mashkani. “Ce (MoO4)2 nanostructures: Synthesis, characterization, and its photocatalyst application through the ultrasonic method.” Journal of Molecular Liquids. 2016, 216, 1–5.
[124]M. Shen, X. Zhang, K. Dai, H. Chen, T. Peng. “Hierarchical PbMoO4 microspheres: hydrothermal synthesis, formation mechanism and photocatalytic properties.” Cryst Eng Comm. 2013, 15, 1146–1152.
[125]R. Sundaram, K. S. Nagaraja. “Solid state electrical conductivity and humidity sensing studies on metal molybdate–molybdenum trioxide composites (M=Ni2+, Cu2+ and Pb2+).” Sensors and Actuators B. 2004, 101, 353–360.
[126]Y. Ding, S.H. Yu, C. Liu, Z.A. Zang. “3D Architectures of Iron Molybdate: Phase Selective Synthesis, Growth Mechanism, and Magnetic Properties.” Chem. Eur. J. 2007, 13, 746-753.
[127]Driscoll, S.; Ozkan, U. S. “Effect of O2 Concentration in Selective and Complete Oxidation of 1,3-Butadiene, Furan, and Maleic Anhydride over MnMoO4/MoO3 Catalysts.” Stud. Surf. Sci. Catal. 1994, 82, 367–375.
[128]S. Bhattacharya. “A. Ghosh, Silver molybdate nanoparticles, nanowires, and nanorods embedded in glass nanocomposites.” Phys Rev B. 2007, 75, 092103.
[129]A. K. Arora, R. Nithya, S. Misra, T. Yagi. “Behavior of silver molybdate at high-pressure.” J Solid State Chem. 2012, 196, 391–397.
[130]Misra, S.; Jayaraman, V.; Gnanasekaran, T. “Trace Level Gas Sensing Characteristics of Nano-Crystalline Silver Decamolybdate.” Soft Nanosci. Lett. 2013, 3, 39−42.
[131]H. Tang, A. Lu, L. Li, W.J. Zhou, Z.X. Xie, L.N. Zhang. “Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix.” Chem.Eng. J. 2013, 234, 124-131.
[132]L. Cheng, Q. Shao, M. Shao, X. W. Wei, Z. C. Wu. “Photoswitches of one-dimensional Ag2MO4 (M = Cr, Mo, and W).” J Phys Chem C. 2009, 113, 1764–1768.
[133]D. Zhou, W. B. Li, L. X. Pang, J. Guo, Z. M. Qi, T. “Shao, Sintering Behavior and Dielectric Properties of Ultra-Low Temperature Fired Silver Molybdate Ceramics.” J. Am. Ceram. Soc. 2014, 97, 3597-3601.
[134]Y. Bai Y. Lu, J. K. Liu. “An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.” J. Hazard. Mater. 2016, 307, 26-35.
[135]L. ZhaoQian, C. XueTai, X. Z. Ling. “Microwave-assisted hydrothermal synthesis of cube-like Ag-Ag2MoO4 with visible-light photocatalytic activity.” Sci. China. Chem. 2013, 56, 443-450.
[136]M. Feng, M. Zhang, J. M. Song, X. G. Li, S. H. Yu. “Ultralong Silver Trimolybdate Nanowires: Synthesis, Phase Transformation, Stability, and Their Photocatalytic, Optical, and Electrical Properties.” ACS Nano. 2011, 5, 6726-6735.
[137]G. Nagaraju, G. T. Chandrappa, J. Livage. “Synthesis and characterization of silver molybdate nanowires, nanorods and multipods.” Bull. Mater. Sci. 2008, 31, 3, 367-371.
[138]K. Saito, S. Kazama, K. Matsubara, T. Yui, M. Yagi. “Monoclinic Ag2Mo2O7 nanowire: a new Ag-Mo-O nanophotocatalyst material.” Inorg. Chem. 2013, 52, 15, 8297-8299.
[139]H. Jiang, J. K. Liu, J.D. Wang, Y. Lu, X. H. Yang. “Thermal perturbation nucleation and growth of silver molybdate nanoclusters by a dynamic template route.” Cryst Eng Comm. 2015, 17, 5511-5521.
[140]D. P. Singh, B. Sirota, S. Talpatra, P. Kohli, C. Rebholz, S. M. Aouadi. “Broom-like and flower-like heterostructures of silver molybdate through pH controlled self assembly.” J. Nanopart. Res. 2012, 14, 660-671.
[141]Powder Diffraction File (JCPDS International Center Differential Data, Swarthmore, 1982) Card No. 08-0473.
[142]K. Saravanakumar, M. Mymoon Ramjan, P. Suresh, V. Muthuraj. “Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants.” Journal of Alloys and Compounds. 2016, 664, 149-160.
[143]J. Subcik, L. Koudelka, P. Mosner, L. Montagne, B. Revel, I. Gregora. “Structure and properties of MoO3-containing zinc borophosphate glasses.” J Non-Cryst Solids. 2009, 355:970–5.
[144]Akhilesh K. Aroraa. “Amorphization and decomposition of scandium molybdate at high pressure.” J. Apply. Phys. 2005, 97, 013508.
[145]Z. Jiang, J. Xie. “In-situ growth of Ag/Ag2O nanoparticles on g-C3N4 by a natural carbon nanodots-assisted green method for synergistic photocatalytic activity.” RSC Adv. 2016, 6, 3186-3197.
[146]Z. Xu, Z. Li, X. Tan, C. M. B. Holt, L. Zhang, B. S. Amirkhiz, D. Mitlin. “Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis.” RSC Advances. 2012, 2, 2753-2755.
[147]L. Yang, J. Wang, Y. Wan, Y. Li, H. Xie, H. Cheng, H. J. Seo. “Structure and effective visible-light-driven photocatalytic activity of α-NiMoO4 for degradation of methylene blue dye.” J. Alloys Compd. 2016, 664, 756-763.
[148]L. Fotouhi, M. Fatollahzadeh, M. M. Heravi. “Electrochemical Behavior and Voltammetric Determination of Sulfaguanidine at a Glassy Carbon Electrode Modified With a Multi-Walled Carbon Nanotube.” Int. J. Electrochem. Sci. 2012, 7, 3919–3928.
[149]S. Wu, H. Zhao, H. Ju, C. Shi, J. Zhao. “Electrodeposition of silver–DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose.” Electrochem. Commun. 2006, 8, 1197–1203.
[150]S. Liu, J. Tian, L. Wang, H. Li, Y. Zhang, X. Sun. “Stable Aqueous Dispersion of Graphene Nanosheets: Noncovalent Functionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection.” Macromolecules. 2010, 43, 10078–10083.
[151]X. Gao, L. Jin, Q. Wu, Z. Chen, X. Lin. “A Nonenzymatic Hydrogen Peroxide Sensor Based on Silver Nanowires and Chitosan Film.” Electroanalysis. 2012, 24, 1771–1777.
[152]X. Qin, H. Wang, Z. Miao, J. Li, Q. Chen. “A novel non-enzyme hydrogen peroxide sensor based on catalytic reduction property of silver nanowires.” Talanta. 2015, 139, 56–61.
[153]C.Y. Lin, Y.H. Lai, A. Balamurugan, R. Vittal, C.W. Lin, K.C. Ho. “Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide.” Talanta. 2010, 82, 340–347.
[154]J. Yin, X. Qi, L. Yang, G. Hao, J. Li, J. Zhong. “A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays.” Electrochim. Acta. 2011, 56, 3884–3889.
[155]K. Liao, P. Mao, Y. Li, Y. Nan, F. Song, G. Wang, M. Han. “A promising method for fabricating Ag nanoparticle modified nonenzyme hydrogen peroxide sensors.” Sens. Actuators B. 2013, 181, 125–129.
[156]X. Yang, J. Bai, Y. Wang, X. Jiang, X. He. “Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process.” Analyst. 2012, 137, 4362–4367.
[157]M. Zhang, Z. Wang. “Nanostructured silver nanowires-graphene hybrids for enhanced electrochemical detection of hydrogen peroxide.” Appl. Phys. Lett. 2013, 102, 213104. 1–5.
[158]Y. Shi, Z. Liu, B. Zhao, Y. Sun, F. Xu, Y. Zhang, Z. Wen, H. Yang, Z. Li. “Carbon nanotube decorated with silver nanoparticles via noncovalent interaction for a novel nonenzymatic sensor towards hydrogen peroxide reduction.” J. Electroanal. Chem. 2011, 656, 29–33.
[159]S. Liu, L. Wang, J. Tian, Y. Luo, X. Zhang, X. Sun. “Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection.” J. Colloid Interface Sci. 2011, 363, 615–619.
[160]X. Qin, H. Wang, X. Wang, Z. Miao, Y. Fang, Q. Chen, X. Shao. “Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction.” Electrochim. Acta. 2011, 56, 3170–3174.