跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王儀婷
研究生(外文):Yi-Ting Wang
論文名稱:還原石墨烯氧化物和鉬酸銀修飾電極的製備及其應用於電化學感測器、生物感測器和光催化反應
論文名稱(外文):Fabrication of Reduced Graphene Oxide Composite and Silver Molybdate Modified Electrodes for Application to Electrochemical Sensors, Biosensors and Photocatalysis
指導教授:陳生明
指導教授(外文):Shen-Ming Chen
口試委員:連萬福黃國林駱碧秀曾添文陳生明
口試委員(外文):Wan-Fu LienKuo-Lin HuangBih-Show LouTian-Mun TsengShen-Ming Chen
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:非均相電子轉移、血紅蛋白、還原石墨烯氧化物、奈米複合材料、生物感測器、水熱法、光催化劑、電化學、環丙沙星、過氧化氫
外文關鍵詞:Heterogeneous electron transferHemoglobinReduced Graphene OxideNanocompositeBiosensorhydrothermalphotocatalystelectrochemicalciprofloxacinhydrogen peroxide.
相關次數:
  • 被引用被引用:2
  • 點閱點閱:545
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:0
我們已經製備還原石墨烯氧化物和鉬酸銀修飾電極及其應用於電化學感測器、生物感測器和光催化反應。例如,在第一部分我們使用石墨烯(graphene)和β-環糊精(β-CD)的奈米複合材料來修飾玻璃碳電極(GCE)以固定血紅蛋白(Hb)的模型。以掃描式電子顯微鏡(SEM)、紫外光-可見光吸收光譜(UV-vis)和傅里葉轉換紅外光譜(FTIR)偵測複合材料的特徵。修飾電極顯示對血紅蛋白具有增強和明確的可逆峰在形式電位為-0.284 V (vs. Ag/AgCl)的位置。和未與石墨烯或β-CD修飾的電極相比, Hb的直接電化學反應在此修飾電極大大的增強了電化學訊號。非均相電子轉移速率常數(Ks)為3.18 ± 0.7 s‾¹,表示電子轉移快速。在-0.33V的工作電位之下,溴酸鹽(bromate)的濃度在0.1到177 μM 範圍內電流反應為線性關係,結果表示生物感測器對溴酸鹽的還原有極好的電催化活性,靈敏度為3.39 µA µM‾¹ cm‾²,偵測極限(LOD)為33 nM。此生物感測器具有快速、良好的選擇性、重複性和再現性,因此可以在水溶液樣品中檢測溴酸鹽。第二部分研究以還原石墨烯氧化物(RGO)和聚多巴胺(PDA)複合修飾玻璃碳電極(GCE)檢測氯丙嗪(CPZ)。RGO@PDA複合材料是由電化學還原的氧化石墨烯(GO)和PDA複合材料製成。所製備的複合材料利用SEM、拉曼和FTIR偵測材料特徵。RGO@PDA複合修飾電極表現出對CPZ優異的電催化氧化行為,與其他修飾電極相比,如GO、RGO和GO@PDA。以安培i-t法測定CPZ,顯示RGO@PDA複合材料能在0.03到967.6 µM的線性範圍內檢測CPZ。此感測器在分析靈敏度為3.74 µA µM–1 cm–2下,具有最低的偵測極限。RGO@PDA複合材料顯示在其他潛在干擾藥物如甲硝唑、苯巴比妥、馬來酸氯苯那敏、吡哆醇和核黃素等存在下,具有高選擇性。所製備的感測器也顯示對藥物片劑中的CPZ適當的回收率。在最後一部分我們研究所合成的鉬酸銀(Ag2MoO4)修飾電極的光催化反應。微觀結構像馬鈴薯般的Ag2MoO4在經由尿素的幫助下利用簡單水熱法合成。由各種不同的分析方法和光譜技術分析Ag2MoO4的特性,例如X射線繞射儀(XRD)、FTIR、拉曼、SEM、X射線能量散佈分析儀(EDX)和X射線光電子光譜(XPS)。此次所製備的Ag2MoO4做為降解環丙沙星(CIP)的光催化劑,且首次用於檢測過氧化氫(H2O2)的電化學感測器。比較特別的是UV-vis光譜的結果顯示Ag2MoO4具有優異的可重複使用光催化活性,在UV光照射下降解CIP,40分鐘後擁有98%以上的大降解率。此外,循環伏安法(CV)和安培法的結果顯示,以Ag2MoO4修飾玻璃碳電極(GCE)檢測H2O2具有良好的線性範圍和偵測極限,分別為0.04到 240 µM和0.03 µM,表示具有良好的電催化性能,並顯示出在兒茶酚、果糖、乳糖、蔗糖、葡萄糖、鄰苯二酚、抗壞血酸、尿酸、多巴胺和腎上腺素等生物干擾物存在下,對H2O2選擇性高。因此,Ag2MoO4用於汙水處理和在真實樣品中電化學檢測H2O2有實際的實用性。
We have fabricated different composite modified electrdoes for application to electrochemical sensors, biosensors and photocatalysis. For instance, in the fisrt part we describe the use of a nanocomposite consisting of graphene and β-cyclodextrin (β-CD) which was used to modify a glassy carbon electrode (GCE) to serve as a matrix for immobilization of hemoglobin (Hb). The composite was characterized by scanning electron microscopy (SEM), Ultraviolet-visible spectroscopy (UV-vis) and Fourier-transform infrared (FTIR) spectroscopy. The modified electrode displays an enhanced and well-defined reversible peaks for the heme protein at a formal potential of -0.284 V (vs. Ag/AgCl). The direct electrochemistry of Hb is strongly enhanced at this modified electrode compared to electrodes not modified with graphene or β-CD. The heterogeneous electron transfer rate constant (Ks) is 3.18 ± 0.7 s‾¹ which indicates fast electron transfer. The biosensor exhibits excellent electrocatalytic activity towards the reduction of bromate, with a linear amperometric response in the 0.1 to 177 μM concentration range at a working voltage of -0.33 V. The sensitivity is 3.39 µA µM‾¹ cm‾², and the detection limit (LOD) is 33 nM. The biosensor is fast, selective, well repeatable and reproducible, and therefore represents a viable platform for sensing bromate in aqueous samples. The part II deals with the fabrication of novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on the reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode (GCE). The RGO@PDA composite was prepared by the electrochemical reduction of graphene oxide (GO) and PDA composite. The resulting composite was further characterized by SEM, Raman and FTIR spectroscopy. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behaviour to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. An amperometric i-t method was used for the determination of CPZ and shows that the RGO@PDA composite could detect the CPZ in the linear ranging from 0.03 to 967.6 µM. The sensor exhibits a low LOD of 0.0018 µM with the analytical sensitivity of 3.74 µA µM–1 cm–2. The RGO@PDA composite shows its high selectivity in the presence of other potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. The fabricated sensor has also showed an appropriate recovery towards CPZ in the pharmaceutical tablets. In the final part (Part III) we have investigated the phtocatalytic activity of as-synthesized silver molybdate (Ag2MoO4) modified electrode. The potato-like Ag2MoO4 microstructure was synthesized through simple hydrothermal treatment with the assistance of urea. The successful formation of Ag2MoO4 was confirmed by various analytical and spectroscopic techniques such as X-ray diffraction, FTIR, Raman, SEM, Energy dispersive x-ray and X-ray photoelectron spectroscopies. Furthermore, the as-prepared Ag2MoO4 was used as a photocatalyst for the degradation of ciprofloxacin (CIP) as well as an electrochemical sensor for the detection of H2O2, for the first time. The obtained UV-vis spectroscopy results demonstrate that, Ag2MoO4 had excellent reusable photocatalytic activity for the degradation CIP under Ultraviolet-light illumination possess great degradation rate of above 98% after 40 min. Moreover, the cyclic voltammetry and amperometry results revealed that Ag2MoO4 modified GCE showed good electrocatalytic performance for the detection of H2O2 with good linear range and LOD are 0.04 to 240 µM, and 0.03 µM, respectively. It also exhibit high selectivity of H2O2 in the presence of range of biological interferences such as catechol, fructose, lactose, sucrose, glucose, hydroquinone, ascorbic acid, uric acid, dopamine, and epinephrine. Hence, the potato-like Ag2MoO4 microstructure has great practical applicability for use as wastewater treatment and electrochemical detection of H2O2 in real samples.
摘要 i
Abstract iii
目錄 v
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 電化學分析方法 1
1.2感測器簡介 2
1.2.1感測器的定義 2
1.2.2生物感測器 4
1.2.3化學感測器 5
1.3 修飾電極簡介 7
1.3.1修飾電極的製備 7
1.3.2修飾電極的應用 8
1.4 藥品簡介 9
1.4.1 石墨烯(Graphene) 9
1.4.2 β-環糊精(β-Cyclodextrin) 10
1.4.3 血紅蛋白(Hemoglobin) 11
1.4.4 溴酸鹽(Bromate) 12
1.4.5還原石墨烯氧化物(Reduced Graphene Oxide, RGO) 12
1.4.6聚多巴胺(Polydopamine, PDA) 13
1.4.7氯丙嗪(Chlorpromazine, CPZ) 14
1.4.8鉬酸銀(silver molybdate) 15
1.4.9環丙沙星(ciprofloxacin, CIP) 15
1.4.10過氧化氫(Hydrogen peroxide) 16
第二章 實驗藥品、器材與分析方法 17
2.1 實驗藥品 17
2.2 實驗器材 18
2.3 分析方法 20
2.3.1 循環伏安法(Cyclic Voltammetry, CV) 20
2.3.1.1原理簡介 20
2.3.1.2實驗方法 22
2.3.1.3實驗裝置 22
2.3.2 安培法(Amperometric i-t cuve) 23
2.3.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 26
2.3.4 傅里葉轉換紅外光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 27
2.3.5 拉曼光譜(Ramam spectroscopy) 28
2.3.5.1原理簡介 28
2.3.5.2拉曼光譜的應用 30
2.3.5.3實驗裝置 30
2.3.6 紫外光-可見光光譜儀(UV-Visible spectroscopy) 30
2.3.7 X-射線繞射分析儀(XRD) 32
2.3.8 X射線光電子光譜(X-ray photoelectron spectroscopy, XPS) 33
2.3.8.1原理簡介 33
2.3.8.2 XPS的應用 34
2.3.8.3實驗裝置 34
2.3.9能量散佈光譜儀 (Energy Dispersive Spectroscopy, EDS) 34
2.3.10電化學阻抗光譜(Electrochemical Impedance Spectroscopy, EIS) 35
第三章 38
直接電化學固定血紅蛋白在含有石墨烯和β-環糊精的修飾玻璃碳電極對溴酸鹽感測研究 38
3.1 前言 38
3.2 製備graphene/β-CD複合材料和固定Hb 39
3.3 結果與討論 40
3.3.1 材料的選擇 40
3.3.2 材料特徵 40
3.3.3 直接電化學血紅蛋白 44
3.3.4 安培法檢測溴酸鹽 47
3.3.5 graphene/β-CD/Hb修飾電極的選擇性與穩定性 51
3.3.6 graphene/β-CD/Hb修飾電極的實用性、重複性與再現性 54
3.4 結論 55
第四章 56
簡易的電化學製備還原石墨烯氧化物@聚多巴胺複合材料;新型安培法檢測氯丙嗪 56
4.1 前言 56
4.2 合成RGO@PDA複合材料 57
4.3 結果與討論 58
4.3.1材料特徵 58
4.3.2 CPZ的電化學行為 61
4.3.3安培法檢測CPZ 66
4.3.4 感測器的選擇性和實用性 67
4.3.5在藥物片劑中檢測CPZ 69
4.3.6感測器的穩定性、精確度和準確度 69
4.4 結論 70
第五章 71
鉬酸銀光催化降解環丙沙星和電化學安培法檢測過氧化氫 71
5.1 前言 71
5.2 製備鉬酸銀修飾電極 72
5.3 結果與討論 73
5.3.1 Ag2MoO4的材料特徵 73
5.3.2 光催化作用 77
5.3.2.1穩定性和再現性 79
5.3.3 過氧化氫在Ag2MoO4修飾電極的電化學性能 79
5.3.3.1以Ag2MoO4修飾電極安培法測定H2O2 82
5.3.3.2選擇性和穩定性研究 83
5.4 結論 85
參考文獻 86
[1]A. Skoog and J. J. Leary, Principles of Instrumental Analysis, 4th ed. Philadelphia: Saunders College Publishing, 1992.
[2]黃炳照、莊睦賢,電化學感測器,化工技術,第七卷,第二期,1999。
[3]J. P. Chambers, B. P. Arulanandam, L. L. Matta, A. Weis and J. J. Valdes, Current Issues in Molecular Biology, 2008, 10, 1-12.
[4]陳詩喆,電流式葡萄糖生物感測器之製備及測試,國立台灣科技大學化學工程研究所碩士論文,2009。
[5]Medical Electronics Laboratory
http://melab.snu.ac.kr/melab/lib/exe/detail.php?id=research%3Aresearch.in.melab%3Abiosensor&cache=cache&media=data:%EB%B0%94%EC%9D%B4%EC%98%A4.%EC%84%BC%EC%84%9C.1.jpg
[6]P. Saber, W. Lund, Talanta, 1982, 29, 457.
[7]J. Wang, D. L. Hutchins-Kumar, Analytical Chemistry, 1986, 58, 402.
[8]R. P. Baldwin, K. N. Thomsen, Talanta, 1991, 38, 1.
[9]R. W. Murray, A. G. Ewing, R. A. Durst, Analytical Chemistry, 59, 1987, 379.
[10]W. M. Damien, Analyst, 1994, 119, 1953.
[11]R. W. Murry, Accounts of Chemical Research, 1980, 13, 135.
[12]K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat Mater, vol. 6, 2007, pp.183-191.
[13]Nature Materials 9, 2010, 840.
[14]蘇清源,石墨烯氧化物之特性與應用前景,物理雙月刊,2011。
[15]Nelson, JM, Chiller, TM, Powers, JH, Angulo, FJ. “Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story,” Clin Infect Dis. 2007, 44, 977–80.
[16]Kawahara, S. “Chemotherapeutic agents under study,” Nippon Rinsho. Dec 1998, 56, 3096–3099.
[17]Samuel P. Kounaves, Tufts University Department of Chemistry, Voltammetric Techniques, Chapter 37.
[18]呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學 研究所碩士論文,2003。
[19]Bard, A.J., Faulkner, L.R., “Electrochemical methods:Fundamentals and applications.” New York :John Wiley&Sons,2nd Edition ,2000.
[20]李昌厚,紫外可見分光光度計,北京:化學工業出版社,2005,第16-60頁。
[21]趙傑. 《材料科學基礎》. 大連理工大學出版社. 2010年3月第45頁
[22]林麗娟, 工業材料研究所, 工業材料, 86期
[23]東邦化學, http://www.tohokaken-cat.jp/pic/photo_analysis/eds_theory.jpg
[24]Marák J, Staňová A, Vaváková V, Hrenáková M, Kaniansky D. “On-line capillary isotachophoresis–capillary zone electrophoresis analysis of bromate in drinking waters in an automated analyzer with coupled columns and photometric detection.” J Chromatogr A. 2012, 1267, 252–258.
[25]Saraji M, Khaje N, Ghani M. “Cetyltrimethylammonium-coated magnetic nanoparticles for the extraction of bromate, followed by its spectrophotometric determination.” Microchim Acta. 2014, 181, 925–933.
[26]Oliveira SM, Oliveira HM, Segundo MA, Rangel AOSS, Lima JLFC, Cerdà V. “Automated solid-phase spectrophotometric system for optosensing of bromate in drinking waters.” Anal. Methods. 2012, 4, 1229–1236.
[27]Mao R, Zhao X, Lan H, Liu H, Qu J. “Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor. ” Water Res. 2015, 77, 1–12.
[28]Zhang J, Yang X. “A simple yet effective chromogenic reagent for the rapid estimation of bromate and hypochlorite in drinking water.” Analyst. 2013, 138, 434–437.
[29]Romele L. “Spectrophotometric determination of low levels of bromate in drinking water after reaction with fuchsin.” Analyst. 1998, 123, 291-294.
[30]Cavalli S, Polesello S, Valsecchi S. “Chloride interference in the determination of bromate in drinking water by reagent free ion chromatography with mass spectrometry detection.” J Chromatogr A. 2005, 1085, 42-46.
[31]Snyder SA, Vanderford BJ, Rexing DJ. “Trace analysis of bromate, chlorate, iodate, and perchlorate in natural and bottled waters.” Environ Sci Technol. 2005, 39, 4586-4593.
[32]Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E. “Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host−guest inclusion for enhanced electrochemical performance.” ACS Nano. 2010, 4, 4001–4010.
[33]Papagiannia GG, Stergioua DV, Armatasb GS, Kanatzidisc MG, Prodromidis MI. “Synthesis, characterization and performance of polyaniline–polyoxometalates (XM12, X = P, Si and M = Mo, W) composites as electrocatalysts of bromates.” Sensor Actuat B-Chem. 2012, 173, 346–353.
[34]Qi H, Zhang C, Li X. “Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin.” Sensor Actuat B-Chem. 2006, 114, 364–370.
[35]Li J, Mei H, Zheng W, Pan P, Sun XJ, Li F, Guo F, Zhou HM, Ma JY, Xu XX, Zheng YF. “A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers.” Colloid Surface B. 2014, 118, 77–82.
[36]Vilian ATE, Chen SM, Kwak CH, Hwang SK, Huh YS, Han YK. “Immobilization of hemoglobin on functionalized multiwalled carbon nanotubes-Poly-L-Histidine-zinc oxide nanocomposites toward the detection of bromate and H2O2.” Sensor Actuat B. 2016, 224, 607–617.
[37] Xu J, Liu C, Wu Z. “Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film.” Microchim Acta. 2011, 172, 425–430.
[38]Zhao H, Ji X, Wang B, Wang N, Li X, Ni R, Ren J. “An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian bluechitosan nanocomposites for organophosphorus pesticides detection.” Biosens Bioelectron. 2015, 65, 23–30.
[39]Geim AK, Novoselov KS. “The rise of graphene.” Nat Mater. 2007, 6, 183.
[40]Khan M, Tahir MN, Adil SF, Khan HU, Siddiqui MRH, Al-warthan AA, Treme W. “Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications.” J Mater Chem A. 2015, 3, 18753–18808.
[41]Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL. “Graphene for electrochemical sensing and biosensing.” Trac-Trend Anal Chem. 2010, 29, 954–965.
[42]Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. “Graphene Based Electrochemical Sensors and Biosensors: A Review.” Electroanal. 2010, 22, 1027–1036.
[43]Wu S, He Q, Tan C, Wang Y, Zhang H. “Graphene-Based Electrochemical Sensors.” Small. 2013, 9, 1160–1172.
[44]Zhou W, Li W, Xie Y, Wang L, Pan K, Tian G, Li M, Wang G, Qu Y, Fu H. “Fabrication of noncovalently functionalized brick-like β-cyclodextrins/graphene composite dispersions with favorable stability.” RSC Adv. 2014, 4, 2813–2819.
[45]Mathapa BG, Paunov VN. “Cyclodextrin stabilised emulsions and cyclodextrinosomes.” Phys Chem Chem Phys. 2013, 15, 17903–17914.
[46]Palanisamy S, Sakthinathan S, Chen SM, Thirumalraj B, Wu TH, Lou BS, Liu XH. “Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine.” Carbohyd Polym. 2016, 135, 267-273.
[47]Palanisamy S, Cheemalapati S, Chen SM. “Highly sensitive and selective hydrogen peroxide biosensor based on hemoglobin immobilized at multiwalled carbon nanotubes–zinc oxide composite electrode.” Anal Biochem. 2012, 429, 108–115.
[48]Ren L, Dong J, Cheng X, Xu J, Hu P. “Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite.” Microchim Acta. 2013, 180, 1333–1340.
[49]Li P, Ding Y, Lu ZY, Li Y, Zhu XS, Zhou YM, Tang YW, Chen Y, Cai CX, Lu TH. “Direct electrochemistry of hemoglobin immobilized on the water-soluble phosphonate functionalized multi-walled carbon nanotubes and its application to nitric oxide biosensing.” Talanta. 2013, 115, 228–234.
[50]Sun W, Guo Y, Ju X, Zhang Y, Wang X, Sun Z. “Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis.” Biosens Bioelectron. 2013, 42, 207–213.
[51]Palanisamy S, Karuppiah C, Chen SM, Periakaruppan P. “A Highly Sensitive and Selective Enzymatic Biosensor Based on Direct Electrochemistry of Hemoglobin at Zinc Oxide Nanoparticles Modified Activated Screen Printed Carbon Electrode.” Electroanal. 2014, 26, 1984–1993.
[52]Xie L, Xu Y, Cao X. “Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode.” Colloid Surface B. 2013, 107, 245– 250.
[53]Chen PY, Yang HH, Huang CC, Chen YH, Shih Y. “Involvement of Cu(II) in the electrocatalytic reduction of bromate on a disposable nano-copper oxide modified screen-printed carbon electrode: hair waving products as an example.” Electrochim Acta. 2015, 161, 100–107.
[54]Zhou DD, Ding L, Cui H, An H, Zhai JP, Li Q. “Fabrication of high dispersion Pd/MWNTs nanocomposite and its electrocatalytic performance for bromate determination.” Chem Eng J. 2012, 32–38.
[55]Salimia A, MamKhezri H, Hallaj R, Zandi S. “Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection.” Electrochim Acta. 2007, 52, 6097–6105.
[56]Thangamuthu R, Wu YC, Chen SM. “Silicomolybdate-incorporated-glutaraldehyde- cross-linked poly-L-lysine film modified glassy carbon electrode as amperometric sensor for bromate determination.” Electroanal. 2009, 21, 1655–1658.
[57]Marafon E, Kubota LT, Gushikem Y. “FAD-modified SiO2/ZrO2/C ceramic electrode for electrocatalytic reduction of bromate and iodate.” J Solid State Electr. 2009, 13, 377–383.
[58]Geim, A. K. & Novoselov, K.S. “The rise of graphene.” Nat. Mater. 2007, 6, 183–191.
[59]Eda, G. & Chhowalla, M. “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics.” Adv. Mater. 2010, 22, 2392–2415.
[60]Hsieh, C., Liu, Y., Roy, A. K. “Pulse electrodeposited Pd nanoclusters on graphene based electrodes for proton exchange membrane fuel cells, Electrochim.” Acta. 2012, 64, 205–210.
[61]Chang, H., Chang, C., Tsai, Y. & Liao, C. “Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor.” Carbon. 2012, 50, 2331–2336.
[62]Raj, M. A. & John, S.A. “Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal.” Chim. Acta. 2013, 771, 14–20.
[63]Wang, D., Yan, W., Vijapur, S. H. & Botte, G.G. “Electrochemically reduced graphene oxide–nickel nanocomposites for urea electrolysis.” Electrochim. Acta. 2013, 89, 732–736.
[64]Zhao, J., Pei, S., Ren, W., Gao, L. & Cheng, H. M. “Efficient preparation of large-area graphene oxide sheets for transparent conductive films.” ACS Nano. 2010, 4, 5245–5252.
[65]Zhu, Y. et al. “Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors.” Carbon. 2010, 48, 2118–2122.
[66]Cote, L. J., Silva, R. C. & Huang, J. “Flash reduction and patterning of graphite oxide and its polymer composite.” J. Am. Chem. Soc. 2009, 131, 11027–11032.
[67]Williams, G., Seger, B. & Kamat, P. V. “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide.” ACS Nano. 2008, 2, 1487–1491.
[68]Kotov, N. A., De´ka´ny, I. & Fendler, J. H. “Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states.” Adv. Mater. 1996, 8, 637–641.
[69]Wang, H., Robinson, J. T., Li, X. & Dai, H. “Solvothermal reduction of chemically exfoliated graphene sheets.” J. Am. Chem. Soc. 2009, 13, 9910–9911.
[70]Toh, S. Y., Loh, K. S., Kamarudin, S. K. & Daud, W. R. W. “Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterization.” Chem. Eng. J. 2014, 251, 422–434.
[71]Guo, H. L., Wang, X. F., Qian, Q. Y., Wang, F. B. & Xia, X. H. “A green approach to the synthesis of graphene nanosheets.” ACS Nano. 2009, 3, 2653–2659.
[72]Viinikanoja, A., Wang, Z., Kauppila, J. & Kvarnstrom, C. “Electrochemical reduction of graphene oxide and its in situ spectroelectrochemical characterization.” Phys. Chem. Chem. Phys. 2012, 14, 14003–14009.
[73]Liu, Y., Ai, K. & Lu, L. “Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields.” Chem. Rev. 2014, 114, 5057−5115.
[74]Ball, V. et al. “Deposition mechanism and properties of thin polydopamine films for high added value applications in surface science at the nanoscale.” BioNanoSci. 2012, 2, 16–34.
[75]Lynge, M. E., Westen, R., Postma, A. & Städler, B. “Polydopamine-a nature-inspired polymer coating for biomedical science.” Nanoscale. 2011, 3, 4916–4928.
[76]Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. “Mussel-inspired surface chemistry for multifunctional coatings.” Science. 2007, 318, 426–430.
[77]Lee, H. et al. “Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers.” Adv. Mater. 2008, 20, 1619–1623.
[78]Hu, W. et al. “Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker.” Anal. Chem. 2014, 86, 4488−4493.
[79]Zheng, L. et al. “Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol.” Sens. Actuators, B. 2013, 177, 344– 349.
[80]Fu, L., Lai, G., Jia, B. & Yu, “A. Preparation and electrocatalytic properties of polydopamine functionalized reduced graphene oxide-silver nanocomposites.” Electrocatalysis. 2015, 6, 72–76.
[81]Ensafi, A. A. & Heydari, E. “Determination of some phenothiazines compounds in pharmaceuticals and human body fluid by electrocatalytic oxidation at a glassy carbon electrode using methylene blue as a mediator.” Anal. Lett. 2008, 41, 2487–2502.
[82]Karimi, M. A. et al. “Electrocatalytic Determination of Chlorpromazine Drug Using Alizarin Red S as a Mediator on the Glassy Carbon Electrode.” Russ. J. Electrochem. 2011, 47, 34–41.
[83]Unnikrishnan, B., Palanisamy, S. & Chen, S. M. “A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite.” Biosens. Bioelectron. 2013, 39, 70–75.
[84]Palanisamy, S., Thangavelu, K., Chen, S. M., Thirumalraj, B. & Liu, X. H. “Preparation and characterization of gold nanoparticles decorated on graphene oxide@polydopamine composite: application for sensitive and low potential detection of catechol.” Sens. Actuators, B. 2016, 233, 5, 298–306.
[85]He, Y. et al. “Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions.” J. Mater. Chem. A. 2014, 2, 9548–9558.
[86]Qu, K., Zheng, Y., Dai, S. & Qiao, S. Z. “Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction.” Nanoscale. 2015, 7, 12598–12605.
[87]Jiang, J., Jiang, T., Wang, Y., Du, X., Wei, Z. & Zhou, H. “Facile preparation of novel Au–polydopamine nanoparticles modified by 4-mercaptophenylboronic acid for use in a glucose sensor.” RSC Adv. 2014, 4, 33658–33661.
[88]Nejad, A. G., Aguilar, L. E., Ambade, R. B. Lee, S. H., Park, C. H. & Kim. C. S. “Immobilization of silver nanoparticles on Electropolymerized polydopamine films for metal implant applications.” Colloids Interface Sci. Commun. 2015, 6, 5–8.
[89]Łukasiewicz, K. M., Tarasiewicz, H. P. & Panuszko, A. “Electrochemical oxidation of phenothiazine derivatives at glassy carbon electrodes and their differential pulse and square‐wave voltammetric determination in pharmaceuticals.” Anal. Lett. 2008, 41, 789–805.
[90]Parvin, M. H. “Graphene paste electrode for detection of chlorpromazine.” Electrochem. Commun. 2011, 13, 366–369.
[91]Unnikrishnan, B., Hsu, P. C. & Chen, S. M. “A multipurpose voltammetric sensor for the determination of chlorpromazine in presence of acetaminophen, uric acid, dopamine and ascorbic Acid.” Int. J. Electrochem. Sci. 2012, 7, 11414–11425.
[92]Bouchta, D., Izaoumen, N., Zejli, H., Kaoutit, M. E. & Temsamani, K. R. A. “Novel electrochemical synthesis of poly-3-methylthiophene--cyclodextrin film application for the analysis of chlorpromazine and some neurotransmitters, Biosens.” Bioelectron. 2005, 20, 2228–2235.
[93]Liu, F., Shao, J. & Zhao, Y. “Electrochemiluminescence detection of chlorpromazine hydrochloride at bare and graphene oxide modified glassy carbon electrodes.” Anal. Methods. 2014, 6, 6483–6487.
[94]Glassmeyer, S. T.; Furlong, E. T.; Kolpin, D. W.; Cahill, J. D. Zaugg, S. D.; Werner, S. L.; Meyer, M. T.; Kryak, D. D. “Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination.” Environ. Sci. Technol.2005, 39, 5157–5169.
[95]Beier, S.; Koster, S.; Veltmann, K.; Schroder, H. F.; Pinnekamp, J. “Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis.” Water Sci. Technol.2010, 61(7), 1691–1698.
[96]Wei, X. Y.; Wang, Z.; Fan, F. H.; Wang, J. X.; Wang, S. C. “Advanced treatment of a complex pharmaceutical wastewater by nanofiltration: Membrane foulant identification and cleaning.” Desalination. 2010, 251, 13, 167–175.
[97]Dodd, M. C.; Shah, A. D.; Von Gunten, U.; Huang, C. H. “Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: reaction kinetics, mechanisms, and transformation pathways.” Environ. Sci. Technol. 2005, 39, 7065−7076.
[98]Carlsson, G.; Orn, S.; Larsson, D. G. J. “Effluent from bulk drug production is toxic to aquatic vertebrates.” Environ. Toxicol. Chem. 2009, 28, 2656−2662.
[99]Aristilde, L.; Melis, A.; Sposito, G. “Inhibition of Photosynthesis by a Fluoroquinolone Antibiotic.” Environ. Sci. Technol. 2010, 44, 4, 1444–1450.
[100]Belden, J. B.; Maul, J. D.; Lydy, M. J. “Partitioning and photodegradation of ciprofloxacin in aqueous systems in the presence of organic matter.” Chemosphere. 2007, 66, 8, 1390–1395.
[101]Tan, Y.Y., Guo, Y., Gu, X.Y., Gu, C. “Effects of metal cations and fulvic acid on the adsorption of ciprofloxacin onto goethite.” Environ. Sci. Pollut. Res. 2015, 22, 609–617.
[102]Wang, P., He, Y.L., Huang, C.H. “Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: reaction kinetics, product and pathway evaluation.” Water Res. 2010, 44, 5989–5998.
[103]E. De Bel, J. Dewulf, H. Van Lagenhove, C. Janssen. “Influence of pH on the sonolysis of ciprofloxacin: biodegradability, ecotoxicity and antibiotic activity of its degradation products.” Chemosphere. 2009, 77, 291–295.
[104]Chen, H., Gao, B., Li, H. “Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide.” J. Hazard. Mater. 2015, 282, 201–207.
[105]J.A. de Lima Perini, M. Perez-Moya, R.F.P. “Nogueira, Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH, J. Photochem.” Photobiol. A. 2013, 259, 53–58.
[106]M. El-Kemary, H. El-Shamy, I. “El-Mehasseb, Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles.” J. Lumin. 2010, 130, 2327–2331.
[107]Z. Jiang, J. Zhu, D. Liu, W. Wei, J. Xie, and M. Chen, “In situ synthesis of bimetallic Ag/Pt loaded single-crystalline anatase TiO2 hollow nano-hemispheres and their improved photocatalytic properties,” CrystEngComm. 2014, 16, 12, 2384–2394.
[108]Z.Jiang, X. Lv, D. Jiang, J. Xie and D. Mao. “Naturalleavesassisted synthesis of nitrogen-doped, carbon-rich nanodots sensitized, Ag-loaded anatase TiO2 square nanosheets with dominant 001 facets and their enhanced catalytic applications.” Journal of Materials Chemistry A. 2013, 1, 47, 14963–14972.
[109]Sui, M.H., Xing, S.C., Sheng, L., Huang, S.H., Guo, H.G. “Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst.” J. Hazard. Mater. 2012, 227–228, 227–236.
[110]H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M. Hasnain Isa. “Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review.” J. Ind. Eng. Chem. 2015, 26, 1–36.
[111]J.A. Byrne, P.S. Dunlop, J.W. Hamilton, P. Fernandez-Ibanez, I. Polo-Lopez, P.K. Sharma, A.S. Vennard. “A review of heterogeneous photocatalysis for water and surface disinfection.” Molecules. 2015, 20, 5574–5615.
[112]E. W. Miller, A. E. Albers, A. Pralle, E. Y. Isacoff, C. J. Chang. “Boronate-Based Fluorescent Probes for Imaging Cellular Hydrogen Peroxide.” J. Am. Chem. Soc. 2005, 127, 16652−16659.
[113]S. G. Rhee. “H2O2, a Necessary Evil for Cell Signaling.” Science. 2006, 312, 1882−1883.
[114]S. A. Penkett, B. M. R. Jones, K. A. Brice, A. E. J. Eggleton. “The importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater.” Atmos. Environ. 2007, 41, 154-168.
[115]C. Laloi, K. Apel, A. Danon. “Reactive oxygen signalling: the latest news.” Curr. Opin. Plant Biol. 2004, 7, 323-328.
[116]W. Xiao, J. S. Chen, C. M. Li, R. Xu, X. W. Lou. “Synthesis, Characterization, and Lithium Storage Capability of AMoO4 (A = Ni, Co) Nanorods.” Chem. Mater. 2010, 22, 746–754.
[117]P. Tournois. “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems.” Opt. Commun. 1997, 140, 245–249.
[118]Z. Zhang, Y. Liu, Z. Huang, L. Ren, X. Qi, X. Wei, J. Zhong. “Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications.” Phys Chem Chem Phys. 2015, 17, 20795-20804.
[119]B. Senthilkumar, K. V. Sankar, R. K. Selvan, M. D. Danielle, M. Manickam. “Nano α-NiMoO4 as a new electrode for electrochemical supercapacitors.” RSC Adv. 2013, 3, 352–357.
[120]Rushbrooke, J. G.; Ansorge, R. E. “Optical Fiber Readout and Performance of Small Scintillating Crystals for a Fine- Grained Gamma Detector.” Nucl. Instrum. Methods Phys. Res., Sect A. 1989, 280, 83–90.
[121]J. H. Ryu, J. W. Yoon, C. S. Lim, W. C. Oh, K. B. Shim. “Microwave-assisted synthesis of CaMoO4 nano-powders by a citrate complex method and its photoluminescence property.” Journal of Alloys and Compounds. 2005, 390, 245–249.
[122]V.B. Mikhailik, H. Kraus. “Performance of scintillation materials at cryogenic temperatures.” Phys. Status Solidi B. 2010, 247, 1583-1599.
[123]A. S. Nasab, M. Maddahfar, S. M. H. Mashkani. “Ce (MoO4)2 nanostructures: Synthesis, characterization, and its photocatalyst application through the ultrasonic method.” Journal of Molecular Liquids. 2016, 216, 1–5.
[124]M. Shen, X. Zhang, K. Dai, H. Chen, T. Peng. “Hierarchical PbMoO4 microspheres: hydrothermal synthesis, formation mechanism and photocatalytic properties.” Cryst Eng Comm. 2013, 15, 1146–1152.
[125]R. Sundaram, K. S. Nagaraja. “Solid state electrical conductivity and humidity sensing studies on metal molybdate–molybdenum trioxide composites (M=Ni2+, Cu2+ and Pb2+).” Sensors and Actuators B. 2004, 101, 353–360.
[126]Y. Ding, S.H. Yu, C. Liu, Z.A. Zang. “3D Architectures of Iron Molybdate: Phase Selective Synthesis, Growth Mechanism, and Magnetic Properties.” Chem. Eur. J. 2007, 13, 746-753.
[127]Driscoll, S.; Ozkan, U. S. “Effect of O2 Concentration in Selective and Complete Oxidation of 1,3-Butadiene, Furan, and Maleic Anhydride over MnMoO4/MoO3 Catalysts.” Stud. Surf. Sci. Catal. 1994, 82, 367–375.
[128]S. Bhattacharya. “A. Ghosh, Silver molybdate nanoparticles, nanowires, and nanorods embedded in glass nanocomposites.” Phys Rev B. 2007, 75, 092103.
[129]A. K. Arora, R. Nithya, S. Misra, T. Yagi. “Behavior of silver molybdate at high-pressure.” J Solid State Chem. 2012, 196, 391–397.
[130]Misra, S.; Jayaraman, V.; Gnanasekaran, T. “Trace Level Gas Sensing Characteristics of Nano-Crystalline Silver Decamolybdate.” Soft Nanosci. Lett. 2013, 3, 39−42.
[131]H. Tang, A. Lu, L. Li, W.J. Zhou, Z.X. Xie, L.N. Zhang. “Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix.” Chem.Eng. J. 2013, 234, 124-131.
[132]L. Cheng, Q. Shao, M. Shao, X. W. Wei, Z. C. Wu. “Photoswitches of one-dimensional Ag2MO4 (M = Cr, Mo, and W).” J Phys Chem C. 2009, 113, 1764–1768.
[133]D. Zhou, W. B. Li, L. X. Pang, J. Guo, Z. M. Qi, T. “Shao, Sintering Behavior and Dielectric Properties of Ultra-Low Temperature Fired Silver Molybdate Ceramics.” J. Am. Ceram. Soc. 2014, 97, 3597-3601.
[134]Y. Bai Y. Lu, J. K. Liu. “An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.” J. Hazard. Mater. 2016, 307, 26-35.
[135]L. ZhaoQian, C. XueTai, X. Z. Ling. “Microwave-assisted hydrothermal synthesis of cube-like Ag-Ag2MoO4 with visible-light photocatalytic activity.” Sci. China. Chem. 2013, 56, 443-450.
[136]M. Feng, M. Zhang, J. M. Song, X. G. Li, S. H. Yu. “Ultralong Silver Trimolybdate Nanowires: Synthesis, Phase Transformation, Stability, and Their Photocatalytic, Optical, and Electrical Properties.” ACS Nano. 2011, 5, 6726-6735.
[137]G. Nagaraju, G. T. Chandrappa, J. Livage. “Synthesis and characterization of silver molybdate nanowires, nanorods and multipods.” Bull. Mater. Sci. 2008, 31, 3, 367-371.
[138]K. Saito, S. Kazama, K. Matsubara, T. Yui, M. Yagi. “Monoclinic Ag2Mo2O7 nanowire: a new Ag-Mo-O nanophotocatalyst material.” Inorg. Chem. 2013, 52, 15, 8297-8299.
[139]H. Jiang, J. K. Liu, J.D. Wang, Y. Lu, X. H. Yang. “Thermal perturbation nucleation and growth of silver molybdate nanoclusters by a dynamic template route.” Cryst Eng Comm. 2015, 17, 5511-5521.
[140]D. P. Singh, B. Sirota, S. Talpatra, P. Kohli, C. Rebholz, S. M. Aouadi. “Broom-like and flower-like heterostructures of silver molybdate through pH controlled self assembly.” J. Nanopart. Res. 2012, 14, 660-671.
[141]Powder Diffraction File (JCPDS International Center Differential Data, Swarthmore, 1982) Card No. 08-0473.
[142]K. Saravanakumar, M. Mymoon Ramjan, P. Suresh, V. Muthuraj. “Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants.” Journal of Alloys and Compounds. 2016, 664, 149-160.
[143]J. Subcik, L. Koudelka, P. Mosner, L. Montagne, B. Revel, I. Gregora. “Structure and properties of MoO3-containing zinc borophosphate glasses.” J Non-Cryst Solids. 2009, 355:970–5.
[144]Akhilesh K. Aroraa. “Amorphization and decomposition of scandium molybdate at high pressure.” J. Apply. Phys. 2005, 97, 013508.
[145]Z. Jiang, J. Xie. “In-situ growth of Ag/Ag2O nanoparticles on g-C3N4 by a natural carbon nanodots-assisted green method for synergistic photocatalytic activity.” RSC Adv. 2016, 6, 3186-3197.
[146]Z. Xu, Z. Li, X. Tan, C. M. B. Holt, L. Zhang, B. S. Amirkhiz, D. Mitlin. “Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis.” RSC Advances. 2012, 2, 2753-2755.
[147]L. Yang, J. Wang, Y. Wan, Y. Li, H. Xie, H. Cheng, H. J. Seo. “Structure and effective visible-light-driven photocatalytic activity of α-NiMoO4 for degradation of methylene blue dye.” J. Alloys Compd. 2016, 664, 756-763.
[148]L. Fotouhi, M. Fatollahzadeh, M. M. Heravi. “Electrochemical Behavior and Voltammetric Determination of Sulfaguanidine at a Glassy Carbon Electrode Modified With a Multi-Walled Carbon Nanotube.” Int. J. Electrochem. Sci. 2012, 7, 3919–3928.
[149]S. Wu, H. Zhao, H. Ju, C. Shi, J. Zhao. “Electrodeposition of silver–DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose.” Electrochem. Commun. 2006, 8, 1197–1203.
[150]S. Liu, J. Tian, L. Wang, H. Li, Y. Zhang, X. Sun. “Stable Aqueous Dispersion of Graphene Nanosheets: Noncovalent Functionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection.” Macromolecules. 2010, 43, 10078–10083.
[151]X. Gao, L. Jin, Q. Wu, Z. Chen, X. Lin. “A Nonenzymatic Hydrogen Peroxide Sensor Based on Silver Nanowires and Chitosan Film.” Electroanalysis. 2012, 24, 1771–1777.
[152]X. Qin, H. Wang, Z. Miao, J. Li, Q. Chen. “A novel non-enzyme hydrogen peroxide sensor based on catalytic reduction property of silver nanowires.” Talanta. 2015, 139, 56–61.
[153]C.Y. Lin, Y.H. Lai, A. Balamurugan, R. Vittal, C.W. Lin, K.C. Ho. “Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide.” Talanta. 2010, 82, 340–347.
[154]J. Yin, X. Qi, L. Yang, G. Hao, J. Li, J. Zhong. “A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays.” Electrochim. Acta. 2011, 56, 3884–3889.
[155]K. Liao, P. Mao, Y. Li, Y. Nan, F. Song, G. Wang, M. Han. “A promising method for fabricating Ag nanoparticle modified nonenzyme hydrogen peroxide sensors.” Sens. Actuators B. 2013, 181, 125–129.
[156]X. Yang, J. Bai, Y. Wang, X. Jiang, X. He. “Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process.” Analyst. 2012, 137, 4362–4367.
[157]M. Zhang, Z. Wang. “Nanostructured silver nanowires-graphene hybrids for enhanced electrochemical detection of hydrogen peroxide.” Appl. Phys. Lett. 2013, 102, 213104. 1–5.
[158]Y. Shi, Z. Liu, B. Zhao, Y. Sun, F. Xu, Y. Zhang, Z. Wen, H. Yang, Z. Li. “Carbon nanotube decorated with silver nanoparticles via noncovalent interaction for a novel nonenzymatic sensor towards hydrogen peroxide reduction.” J. Electroanal. Chem. 2011, 656, 29–33.
[159]S. Liu, L. Wang, J. Tian, Y. Luo, X. Zhang, X. Sun. “Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection.” J. Colloid Interface Sci. 2011, 363, 615–619.
[160]X. Qin, H. Wang, X. Wang, Z. Miao, Y. Fang, Q. Chen, X. Shao. “Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction.” Electrochim. Acta. 2011, 56, 3170–3174.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top