|
1. 燃料電池の基礎マスター. 2009: 電気書院. 2. Water, U., Activated Carbon. 2018. 3. Paulsmith99, Fuel Cell chin.PNG. 2012年9月22日. 4. Ryoo, R. and S.H. Joo, Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. Vol. 148. 2004. 241-260. 5. Wei, J., et al., A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Advanced Functional Materials, 2013. 23(18): p. 2322-2328. 6. Pozun, Z.D., et al., A Systematic Investigation of p-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 2013. 117(15): p. 7598-7604. 7. McBain, J.W., Persorption and monomolecular sieves. Transactions of the Faraday Society, 1932. 28(0): p. 408-409. 8. Zdravkov, B.D., et al., Pore classification in the characterization of porous materials: A perspective. Central European Journal of Chemistry, 2007. 5(2): p. 385-395. 9. Beck, J.S., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992. 114(27): p. 10834-10843. 10. Vartuli, J.C., et al., The Synthesis and Properties of M41S and Related Mesoporous Materials, in Synthesis. 1998, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 97-119. 11. Alfredsson, V. and M.W. Anderson, Structure of MCM-48 Revealed by Transmission Electron Microscopy. Chemistry of Materials, 1996. 8(5): p. 1141-1146. 12. Yoshitake, H., T. Yokoi, and T. Tatsumi, Adsorption of Chromate and Arsenate by Amino-Functionalized MCM-41 and SBA-1. Chemistry of Materials, 2002. 14(11): p. 4603-4610. 13. Hunter, H.M.A. and P.A. Wright, Synthesis and characterisation of the mesoporous silicate SBA-2 and its performance as an acid catalyst. Microporous and Mesoporous Materials, 2001. 43(3): p. 361-373. 14. Kruk, M., et al., Characterization of the Porous Structure of SBA-15. Chemistry of Materials, 2000. 12(7): p. 1961-1968. 15. Kleitz, F., S. Hei Choi, and R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications, 2003(17): p. 2136-2137. 16. Kresge, C.T., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992. 359: p. 710. 17. Tüysüz, H., et al., Direct Imaging of Surface Topology and Pore System of Ordered Mesoporous Silica (MCM-41, SBA-15, and KIT-6) and Nanocast Metal Oxides by High Resolution Scanning Electron Microscopy. Journal of the American Chemical Society, 2008. 130(34): p. 11510-11517. 18. Lo, A.-Y., et al., Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction. Applied Energy, 2012. 100: p. 66-74. 19. Lo, A.-Y., et al., Fabrication of CNTs with controlled diameters and their applications as electrocatalyst supports for DMFC. Diamond and Related Materials, 2011. 20(3): p. 343-350. 20. Yu, N., et al., Gold nanoparticles supported on periodic mesoporous organosilicas for epoxidation of olefins: Effects of pore architecture and surface modification method of the supports. Microporous and Mesoporous Materials, 2011. 143(2): p. 426-434. 21. Slowing, I.I., et al., Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials, 2007. 17(8): p. 1225-1236. 22. Giri, S., V.S.Y. Trewyn Bg Fau - Lin, and V.S. Lin, Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. (1748-6963 (Electronic)). 23. He, Q., et al., The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. (1878-5905 (Electronic)). 24. Soler-Illia, G., et al., Block Copolymer-Templated Mesoporous Oxides. Vol. 8. 2003. 109-126. 25. Huang, Y., et al., Highly Ordered Mesoporous Carbonaceous Frameworks from a Template of a Mixed Amphiphilic Triblock-Copolymer System of PEO–PPO–PEO and Reverse PPO–PEO–PPO. Chemistry – An Asian Journal, 2007. 2(10): p. 1282-1289. 26. Tsoncheva, T., et al., Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. Applied Catalysis B: Environmental, 2009. 89(3): p. 365-374. 27. Alam, S., et al., Comparative study on the magnetic properties of iron oxide nanoparticles loaded on mesoporous silica and carbon materials with different structure. Microporous and Mesoporous Materials, 2009. 121(1): p. 178-184. 28. Vinu, A., et al., Three-Dimensional Ultralarge-Pore Ia3d Mesoporous Silica with Various Pore Diameters and Their Application in Biomolecule Immobilization. Chemistry – A European Journal, 2008. 14(36): p. 11529-11538. 29. Saikia, D., et al., A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries. RSC Advances, 2015. 5(53): p. 42922-42930. 30. Chandra Rath, P., et al., Highly enhanced electrochemical performance of ultrafine CuO nanoparticles confined in ordered mesoporous carbons as anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2016. 4(37): p. 14222-14233. 31. Shon, J.K., et al., Facile synthesis of highly ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity. Chemical Communications, 2009(6): p. 650-652. 32. Hoque, M.A., et al., Tin oxide - mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction. Electrochimica Acta, 2014. 121: p. 421-427. 33. Shi, Y.F., et al., Highly Ordered Mesoporous Silicon Carbide Ceramics with Large Surface Areas and High Stability. Advanced Functional Materials, 2006. 16(4): p. 561-567. 34. Knox, J.H., B. Kaur, and G.R. Millward, Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A, 1986. 352: p. 3-25. 35. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56. 36. Kyotani, T., et al., Heat treatment of polyfurfuryl alcohol prepared between taeniolite lamellae. Carbon, 1994. 32(4): p. 627-635. 37. Bandosz, T.J., et al., Pore Structure of Carbon−Mineral Nanocomposites and Derived Carbons Obtained by Template Carbonization. Chemistry of Materials, 1996. 8(8): p. 2023-2029. 38. Ryoo, R., S.H. Joo, and S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B, 1999. 103(37): p. 7743-7746. 39. Maiyalagan, T., et al., Three-dimensional cubic ordered mesoporous carbon (CMK-8) as highly efficient stable Pd electro-catalyst support for formic acid oxidation. Journal of Power Sources, 2012. 211: p. 147-153. 40. Ali, M., et al., “Save money” during hydrogenation reactions by exploiting the superior performance of Pd-NPs deposited on carbon black by magnetron sputtering. Tetrahedron, 2017. 73(38): p. 5593-5598. 41. Maniam, K.K., V. Muthukumar, and R. Chetty, Electrodeposition of dendritic palladium nanostructures on carbon support for direct formic acid fuel cells. International Journal of Hydrogen Energy, 2016. 41(41): p. 18602-18609. 42. Solovyov, L.A., et al., Detailed structure of the hexagonally packed mesostructured carbon material CMK-3. Carbon, 2002. 40(13): p. 2477-2481. 43. Darmstadt, H., et al., Surface and Pore Structures of CMK-5 Ordered Mesoporous Carbons by Adsorption and Surface Spectroscopy. Chemistry of Materials, 2003. 15(17): p. 3300-3307. 44. Maiyalagan, T., T.O. Alaje, and K. Scott, Highly Stable Pt–Ru Nanoparticles Supported on Three-Dimensional Cubic Ordered Mesoporous Carbon (Pt–Ru/CMK-8) as Promising Electrocatalysts for Methanol Oxidation. The Journal of Physical Chemistry C, 2012. 116(3): p. 2630-2638. 45. Kim, T.-W., et al., Hydrogen production via the aqueous phase reforming of polyols over CMK-9 mesoporous carbon supported platinum catalysts. International Journal of Hydrogen Energy, 2015. 40(44): p. 15236-15243. 46. Kuppan, B. and P. Selvam, Platinum-supported mesoporous carbon (Pt/CMK-3) as anodic catalyst for direct methanol fuel cell applications: The effect of preparation and deposition methods. Progress in Natural Science: Materials International, 2012. 22(6): p. 616-623. 47. Mei, B.-A. and L. Pilon, Three-Dimensional Cyclic Voltammetry Simulations of EDLC Electrodes Made of Ordered Carbon Spheres. Electrochimica Acta, 2017. 255: p. 168-178. 48. Liu, Y., et al., Ionic liquids combined with Pt-modified ordered mesoporous carbons as electrolytes for the oxygen sensing. Sensors and Actuators B: Chemical, 2018. 254: p. 490-501. 49. Yang, Y., et al., Synthesis of Au nanoparticles supported on mesoporous N-doped carbon and its high catalytic activity towards hydrogenation of 4-nitrophenol to 4-aminophenol. International Journal of Hydrogen Energy, 2017. 42(49): p. 29236-29243. 50. Ding, J., et al., Platinum and platinum–ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions. Electrochimica Acta, 2005. 50(15): p. 3131-3141. 51. Jurewicz, K., et al., Capacitance properties of ordered porous carbon materials prepared by a templating procedure. Journal of Physics and Chemistry of Solids, 2004. 65(2): p. 287-293. 52. murata, 一文看懂什麼是超級電容?. 2017-11. 53. BreakdownDiode, The Composition of sensor in Traditional Chinese.png. 2013年12月18日. 54. Bo, X., et al., Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta, 2010. 82(1): p. 85-91. 55. 山豐化工股份有限公司, 膜分離過程. 2008. 56. 童國倫、阮若屈, 最小心眼的薄膜— 逆滲透膜Q奈米濾膜. 科學發展, 2008年9月,429期. 57. Lee, J.H., S.K. Hong, and W.B. Ko, Reduction of 4-Nitrophenol Catalyzed by Platinum Nanoparticles Embedded into Carbon Nanocolloids. Asian Journal of Chemistry, 2011. 23(5): p. 2347-2350. 58. . 59. Ma, Y., X. Wu, and G. Zhang, Core-shell Ag@Pt nanoparticles supported on sepiolite nanofibers for the catalytic reduction of nitrophenols in water: Enhanced catalytic performance and DFT study. Applied Catalysis B: Environmental, 2017. 205: p. 262-270. 60. 研之成理, BET試驗中常見的6種吸附等溫線和5種回滯環. 2018年2月23日. 61. Salem, M.A., E.A. Bakr, and H.G. El-Attar, Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018. 188: p. 155-163. 62. Ignaszak, A., et al., Pt-SnO2−Pd/C Electrocatalyst with Enhanced Activity and Durability for the Oxygen Reduction Reaction at Low Pt Loading: The Effect of Carbon Support Type and Activation. The Journal of Physical Chemistry C, 2010. 114(39): p. 16488-16504.
|