跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈宗翰
研究生(外文):Zong-Han-Shen
論文名稱:鉑合金/CMK-8複合催化劑之開發及其於還原對-硝基苯酚之應用
論文名稱(外文):Development of Pt-alloy/CMK-8 Composite Catalyst and its Application for 4-NP(4-nitropheno, 4-NP) Reduction
指導教授:駱安亞
指導教授(外文):An-Ya-Lo
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:186
中文關鍵詞:有序中孔碳對硝基苯酚
外文關鍵詞:ordered mesoporous carbonplatinumsilverp-nitrophenol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用水熱法合成KIT-6,藉由溫度的改變合成出不同孔徑的KIT-6,並據以複製出表面積可達1155 m²/g之有序中孔碳CMK-8。並將Pt、Ag、Au、PtSnO2、PtAg前驅物以浸漬法附載於CMK-#孔洞內製備成複合材料。其中,CMK-#為CMK系列中孔碳材。應用於對硝基苯酚(4-nitrophenol, 4-NP)還原成對胺基苯酚(4-aminophenol, 4-AP),並觀察添加不同材料(Ag、SnO2)於Pt/CMK-8催化劑對於催化還原性能的影響。並透過比表面積分析儀(BET)、掃描式電子顯微鏡(FE-SEM)、場發射穿透式電子顯微鏡(HR-TEM)、高解析X光繞射儀(XRD)、X射線光電子能譜儀(XPS)對奈米複合材料催化劑進行結構組成和性質分析。採用紫外光/可見光光譜儀(UV-vis)即時監控對硝基苯酚(1mM)還原對胺基苯酚的反應過程與時間的關係。研究表明,PtH/CMK-8只需要4分鐘即可完成整個反應過程。

利用不同的還原法分別命名為PtB/CMK-8(硼氫化納還原法)與PtH/CMK-8(氫氣還原法),其中以PtH/CMK-8(氫氣還原法)所合成的鉑粒子粒徑最小且不會發生團聚現象。為了降低鉑的使用量,因此利用銀(Ag)金屬來參雜,銀比例越多,加快了還原速率。如果改用金屬氧化物(SnO2)參雜,Pt5Sn15中過量的SnO2團聚造成鉑催化活性的降低,導致10分鐘才能完成還原反應。將Pt5Ag15此比例添加於不同類型之中孔碳(CMK-3、CMK-5、CMK-9),循環催化效果非常穩定,Pt5Ag15/CMK-3僅需要30秒就可以完成還原反應。根據不同催化劑的所需的還原反應時間做總結,可以得出Pt5Ag15/CMK-3>Pt5Ag15/CMK-8> Pt5Ag15/CMK-5> Pt5Ag15/CMK-9> Pt10Ag10/CMK-8> Pt15Ag5/CMK-8> Pt15Sn5/CMK-8>Pt/CMK-8>Pt10Sn10/CMK-8=Ag/CMK-8>Au/CMK-8>Pt5Sn15/CMK-8
KIT-6 was synthesized by hydrothermal method to synthesize KIT-6 with different pore sizes by changing the temperature. However, the specific surface area decreased with the increase of temperature. The ordered mesoporous carbon CMK-8 was replicated by KIT6-40°as a template. The surface area was 1155 m2/g, and the platinum precursor was prepared in the pore cavity of CMK-8 by impregnation. It is applied to the reduction of p-nitrophenol (4-nitrophenol, 4-NP) to p-aminophenol (4-aminophenol, 4-AP), and the effects of the addition of different materials (Ag, SnO2) on the catalytic reduction performance of Pt/CMK-8 catalysts, and through specific surface area analyzer (BET), scanning electron microscope (FE-SEM), field emission penetrating electron display The structure and properties of nanocomposite catalysts were analyzed by micromirror (HR-TEM), high analytical X light diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The relationship between the reaction process and time of the reduction of p-nitrophenol (1mM) with p-nitrophenol (1mM) was monitored by ultraviolet light / light spectrometer (UV-vis). The study showed that PtH/CMK-8 It takes only 4 minutes to complete the whole reaction process.

PtB/CMK-8 (borohydride reduction method) and PtH/CMK-8 (hydrogen reduction method) are named respectively by different reduction methods, in which the particle size of platinum particles synthesized by PtH/CMK-8 (hydrogen reduction method) is the smallest and no agglomeration occurs. In order to reduce the use of platinum, the amount of silver (Ag) metal is mixed,the more the proportion of silver, the rate of reduction is accelerated.. If the metal oxide (SnO2) is used, the excess SnO2 reunion in Pt5Sn15 causes a reduction in the catalytic activity of the platinum catalyst, resulting in the reduction of the reduction reaction in 10 minutes. The ratio of Pt5Ag15 is added to different types of mesoporous carbon (CMK-3, CMK-5, CMK-9),and the catalytic effect is very stable and Pt5Ag15/CMK-3 takes 30 seconds. The reduction reaction can be completed. The reduction reaction can be completed. According to the reduction reaction time of different catalysts, it can be concluded that Pt5Ag15/CMK-3>Pt5Ag15/CMK-8>Pt5Ag15/CMK-5>Pt5Ag15/CMK-9>Pt10Ag10/CMK-8>Pt15Ag5/CMK-8>Pt15Sn5/CMK-8>Pt/CMK-8>Pt10Sn10/CMK-8=Ag/CMK-8>Au/CMK-8>Pt5Sn15/CMK-8.
摘要 3
Abstract 5
目錄
第一章 緒論 26
1-1 前言 26
1-2 研究動機及目的 27
第二章 文獻回顧 29
2-1孔洞材料簡介 29
2-2中孔二氧化矽介紹 33
2-2-1中孔KIT-6介紹 36
2-2-2中孔KIT-6合成機制 36
2-3中孔碳發展歷史 38
2-3-1中孔碳合成機制 39
2-3-2中孔碳附載金屬方法介紹 42
2-4中孔碳材料CMK-n 42
2-4-1 CMK-8介紹 45
2-4-2奈米鉑負載碳製備方法 46
2-4-3 CMK-8/Pt合成機制 48
2-5附載金屬之中孔碳在催化劑之應用 48
2-5-1燃料電池 49
2-5-2 超級電容 52
2-5-3感測器 53
2-5-4 氣體吸附 54
2-5-5 水中汙染物吸附與催化還原 56
2-6對硝基苯酚的介紹 59
2-7 奈米金屬對於4-NP的還原 60
第三章 實驗方法及步驟 64
3-1實驗藥品 66
3-2 實驗方法 68
3-2-1 中孔二氧化矽KIT-6製備 68
3-2-2中孔碳材CMK-8製備 70
3-2-3中孔奈米複合材料Pt/Au/Ag-CMK-8製備 72
3-2-4中孔奈米複合材料Pt/Ag-CMK-8製備 75
3-2-5中孔奈米複合材料Pt/SnO2-CMK-8製備 76
3-2-6催化反應 79
3-3分析設備 80
3-3-1比表面積分析儀(Brunauer-Emmett-Teller specific surface area analyzer, BET) 80
3-3-2場發射穿透式電子顯微鏡(High Resolution Transmission Electron Microscope, HR-TEM ) 83
3-3-3掃描電子顯微鏡(Scanning Electron Microscope:FE-SEM) 84
3-3-4 X射線光電子能譜學(X-ray photoelectron spectroscopy, XPS ) 85
3-3-5高解析X光繞射儀(High Resolution X-ray Diffractometer, HRXRD) 86
3-3-6紫外光-可見光光譜儀(UV-Vis spectrophotometer) 87
第四章 結果與討論 88
4-1 水熱溫度對KIT-6材料孔洞特性之影響 88
4-2 CMK-8的合成與鑑定 94
4-3 還原方式對Pt/CMK-8之微觀特性之影響 98
4-4 鍛燒溫度與時間對鉑奈米粒子的影響 98
4-5 Au/CMK-8之結構特性 112
4-6 Ag /CMK-8之結構特性 118
4-7 催化還原對-硝基苯酚(4-NP) 123
4-8 PtAg/CMK-8雙金屬合金對硝基苯酚的催化還原 130
4-9 PtSnO2/CMK-8催化劑對硝基苯酚的催化還原 142
4-10 PtAg/CMK-# (CMK-3、CMK-5、CMK-8、CMK-9) 對硝基苯酚催化還原的影響 153
第五章 結論 170
參考文獻 172
1. 燃料電池の基礎マスター. 2009: 電気書院.
2. Water, U., Activated Carbon. 2018.
3. Paulsmith99, Fuel Cell chin.PNG. 2012年9月22日.
4. Ryoo, R. and S.H. Joo, Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. Vol. 148. 2004. 241-260.
5. Wei, J., et al., A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Advanced Functional Materials, 2013. 23(18): p. 2322-2328.
6. Pozun, Z.D., et al., A Systematic Investigation of p-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 2013. 117(15): p. 7598-7604.
7. McBain, J.W., Persorption and monomolecular sieves. Transactions of the Faraday Society, 1932. 28(0): p. 408-409.
8. Zdravkov, B.D., et al., Pore classification in the characterization of porous materials: A perspective. Central European Journal of Chemistry, 2007. 5(2): p. 385-395.
9. Beck, J.S., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992. 114(27): p. 10834-10843.
10. Vartuli, J.C., et al., The Synthesis and Properties of M41S and Related Mesoporous Materials, in Synthesis. 1998, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 97-119.
11. Alfredsson, V. and M.W. Anderson, Structure of MCM-48 Revealed by Transmission Electron Microscopy. Chemistry of Materials, 1996. 8(5): p. 1141-1146.
12. Yoshitake, H., T. Yokoi, and T. Tatsumi, Adsorption of Chromate and Arsenate by Amino-Functionalized MCM-41 and SBA-1. Chemistry of Materials, 2002. 14(11): p. 4603-4610.
13. Hunter, H.M.A. and P.A. Wright, Synthesis and characterisation of the mesoporous silicate SBA-2 and its performance as an acid catalyst. Microporous and Mesoporous Materials, 2001. 43(3): p. 361-373.
14. Kruk, M., et al., Characterization of the Porous Structure of SBA-15. Chemistry of Materials, 2000. 12(7): p. 1961-1968.
15. Kleitz, F., S. Hei Choi, and R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications, 2003(17): p. 2136-2137.
16. Kresge, C.T., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992. 359: p. 710.
17. Tüysüz, H., et al., Direct Imaging of Surface Topology and Pore System of Ordered Mesoporous Silica (MCM-41, SBA-15, and KIT-6) and Nanocast Metal Oxides by High Resolution Scanning Electron Microscopy. Journal of the American Chemical Society, 2008. 130(34): p. 11510-11517.
18. Lo, A.-Y., et al., Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction. Applied Energy, 2012. 100: p. 66-74.
19. Lo, A.-Y., et al., Fabrication of CNTs with controlled diameters and their applications as electrocatalyst supports for DMFC. Diamond and Related Materials, 2011. 20(3): p. 343-350.
20. Yu, N., et al., Gold nanoparticles supported on periodic mesoporous organosilicas for epoxidation of olefins: Effects of pore architecture and surface modification method of the supports. Microporous and Mesoporous Materials, 2011. 143(2): p. 426-434.
21. Slowing, I.I., et al., Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials, 2007. 17(8): p. 1225-1236.
22. Giri, S., V.S.Y. Trewyn Bg Fau - Lin, and V.S. Lin, Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. (1748-6963 (Electronic)).
23. He, Q., et al., The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. (1878-5905 (Electronic)).
24. Soler-Illia, G., et al., Block Copolymer-Templated Mesoporous Oxides. Vol. 8. 2003. 109-126.
25. Huang, Y., et al., Highly Ordered Mesoporous Carbonaceous Frameworks from a Template of a Mixed Amphiphilic Triblock-Copolymer System of PEO–PPO–PEO and Reverse PPO–PEO–PPO. Chemistry – An Asian Journal, 2007. 2(10): p. 1282-1289.
26. Tsoncheva, T., et al., Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. Applied Catalysis B: Environmental, 2009. 89(3): p. 365-374.
27. Alam, S., et al., Comparative study on the magnetic properties of iron oxide nanoparticles loaded on mesoporous silica and carbon materials with different structure. Microporous and Mesoporous Materials, 2009. 121(1): p. 178-184.
28. Vinu, A., et al., Three-Dimensional Ultralarge-Pore Ia3d Mesoporous Silica with Various Pore Diameters and Their Application in Biomolecule Immobilization. Chemistry – A European Journal, 2008. 14(36): p. 11529-11538.
29. Saikia, D., et al., A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries. RSC Advances, 2015. 5(53): p. 42922-42930.
30. Chandra Rath, P., et al., Highly enhanced electrochemical performance of ultrafine CuO nanoparticles confined in ordered mesoporous carbons as anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2016. 4(37): p. 14222-14233.
31. Shon, J.K., et al., Facile synthesis of highly ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity. Chemical Communications, 2009(6): p. 650-652.
32. Hoque, M.A., et al., Tin oxide - mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction. Electrochimica Acta, 2014. 121: p. 421-427.
33. Shi, Y.F., et al., Highly Ordered Mesoporous Silicon Carbide Ceramics with Large Surface Areas and High Stability. Advanced Functional Materials, 2006. 16(4): p. 561-567.
34. Knox, J.H., B. Kaur, and G.R. Millward, Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A, 1986. 352: p. 3-25.
35. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56.
36. Kyotani, T., et al., Heat treatment of polyfurfuryl alcohol prepared between taeniolite lamellae. Carbon, 1994. 32(4): p. 627-635.
37. Bandosz, T.J., et al., Pore Structure of Carbon−Mineral Nanocomposites and Derived Carbons Obtained by Template Carbonization. Chemistry of Materials, 1996. 8(8): p. 2023-2029.
38. Ryoo, R., S.H. Joo, and S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B, 1999. 103(37): p. 7743-7746.
39. Maiyalagan, T., et al., Three-dimensional cubic ordered mesoporous carbon (CMK-8) as highly efficient stable Pd electro-catalyst support for formic acid oxidation. Journal of Power Sources, 2012. 211: p. 147-153.
40. Ali, M., et al., “Save money” during hydrogenation reactions by exploiting the superior performance of Pd-NPs deposited on carbon black by magnetron sputtering. Tetrahedron, 2017. 73(38): p. 5593-5598.
41. Maniam, K.K., V. Muthukumar, and R. Chetty, Electrodeposition of dendritic palladium nanostructures on carbon support for direct formic acid fuel cells. International Journal of Hydrogen Energy, 2016. 41(41): p. 18602-18609.
42. Solovyov, L.A., et al., Detailed structure of the hexagonally packed mesostructured carbon material CMK-3. Carbon, 2002. 40(13): p. 2477-2481.
43. Darmstadt, H., et al., Surface and Pore Structures of CMK-5 Ordered Mesoporous Carbons by Adsorption and Surface Spectroscopy. Chemistry of Materials, 2003. 15(17): p. 3300-3307.
44. Maiyalagan, T., T.O. Alaje, and K. Scott, Highly Stable Pt–Ru Nanoparticles Supported on Three-Dimensional Cubic Ordered Mesoporous Carbon (Pt–Ru/CMK-8) as Promising Electrocatalysts for Methanol Oxidation. The Journal of Physical Chemistry C, 2012. 116(3): p. 2630-2638.
45. Kim, T.-W., et al., Hydrogen production via the aqueous phase reforming of polyols over CMK-9 mesoporous carbon supported platinum catalysts. International Journal of Hydrogen Energy, 2015. 40(44): p. 15236-15243.
46. Kuppan, B. and P. Selvam, Platinum-supported mesoporous carbon (Pt/CMK-3) as anodic catalyst for direct methanol fuel cell applications: The effect of preparation and deposition methods. Progress in Natural Science: Materials International, 2012. 22(6): p. 616-623.
47. Mei, B.-A. and L. Pilon, Three-Dimensional Cyclic Voltammetry Simulations of EDLC Electrodes Made of Ordered Carbon Spheres. Electrochimica Acta, 2017. 255: p. 168-178.
48. Liu, Y., et al., Ionic liquids combined with Pt-modified ordered mesoporous carbons as electrolytes for the oxygen sensing. Sensors and Actuators B: Chemical, 2018. 254: p. 490-501.
49. Yang, Y., et al., Synthesis of Au nanoparticles supported on mesoporous N-doped carbon and its high catalytic activity towards hydrogenation of 4-nitrophenol to 4-aminophenol. International Journal of Hydrogen Energy, 2017. 42(49): p. 29236-29243.
50. Ding, J., et al., Platinum and platinum–ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions. Electrochimica Acta, 2005. 50(15): p. 3131-3141.
51. Jurewicz, K., et al., Capacitance properties of ordered porous carbon materials prepared by a templating procedure. Journal of Physics and Chemistry of Solids, 2004. 65(2): p. 287-293.
52. murata, 一文看懂什麼是超級電容?. 2017-11.
53. BreakdownDiode, The Composition of sensor in Traditional Chinese.png. 2013年12月18日.
54. Bo, X., et al., Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta, 2010. 82(1): p. 85-91.
55. 山豐化工股份有限公司, 膜分離過程. 2008.
56. 童國倫、阮若屈, 最小心眼的薄膜—
逆滲透膜Q奈米濾膜. 科學發展, 2008年9月,429期.
57. Lee, J.H., S.K. Hong, and W.B. Ko, Reduction of 4-Nitrophenol Catalyzed by Platinum Nanoparticles Embedded into Carbon Nanocolloids. Asian Journal of Chemistry, 2011. 23(5): p. 2347-2350.
58. .
59. Ma, Y., X. Wu, and G. Zhang, Core-shell Ag@Pt nanoparticles supported on sepiolite nanofibers for the catalytic reduction of nitrophenols in water: Enhanced catalytic performance and DFT study. Applied Catalysis B: Environmental, 2017. 205: p. 262-270.
60. 研之成理, BET試驗中常見的6種吸附等溫線和5種回滯環. 2018年2月23日.
61. Salem, M.A., E.A. Bakr, and H.G. El-Attar, Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018. 188: p. 155-163.
62. Ignaszak, A., et al., Pt-SnO2−Pd/C Electrocatalyst with Enhanced Activity and Durability for the Oxygen Reduction Reaction at Low Pt Loading: The Effect of Carbon Support Type and Activation. The Journal of Physical Chemistry C, 2010. 114(39): p. 16488-16504.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊