跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭木良
研究生(外文):Mu-Liang Guo
論文名稱:結合資料探勘與類神經網路應用於股票市場的預測
論文名稱(外文):A Hybrid System Integrating Data Mining and Artificial Intelligence Approaches for Stock Price Prediction
指導教授:鄭揚耀鄭揚耀引用關係
指導教授(外文):Lee-Young Cheng
口試委員:陳安行鄭揚耀黃劭彥
口試委員(外文):An-Sing ChenLee-Young ChengShaio-Yan Huang
口試日期:2013-11-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:43
中文關鍵詞:股市預測資料探勘類神經網路
外文關鍵詞:Stock predictionData miningNeural network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1446
  • 評分評分:
  • 下載下載:101
  • 收藏至我的研究室書目清單書目收藏:1
本文結合資料探勘與類神經網路的方法,實作一個股票預測系統。與其他研究不同的是,此系統是直接結合兩個方法,分別處理技術指標及總體經濟指標。同時,我們相信技術指標並不是每個時間點都是有效的,而技術指標的有效性會受其他的技術指標以及總體經濟指標的影響。因此,我們提出的系統結合這兩種方法進行了兩個實驗,驗證此系統在不同產業之間的預測能力。實證結果顯示,此系統能輔助投資者判斷正確的進出場時機,因而避免額外的損失,提高獲利能力,同時也能降低交易成本。
In this study, we develop a new hybrid stock prediction system by integrating data mining and artificial intelligence techniques. Different from other studies, this study proposes a system that does not predict stock price using these techniques directly. We posit that technical indicators are not always effective. Each indicator is affected by other indicators and fundamentalist factors. Consequently, the proposed system integrates these two techniques to optimize their advantages based on technical and fundamental indicators. We conduct two experiments to examine the prediction ability of the proposed system across different industries. The results reveal that the proposed system is capable of determining the right timing for an investor to avoid extra loss, increase profitability, and decrease trading cost.
Abstract i
Content ii
List of Table iii
List of Figure iv
1 Introduction 1
2 Literature review 3
3. Methodology 11
3.1 System construction 11
3.2 Data preprocess 11
3.3 System construction 17
4 Comparative analyses on returns and experiments 21
4.1 Dataset and model construction 21
4.2 Experiments 23
5 Conclusions 31
References 32
Appendix A 33

A. M. Azoff, 1994 "Neural Network Time Series Forecasting of Financial Markets, " Wiley
C. Cortes and V. Vapnik, 1995, "Support-Vector Networks, Machine Learning," 20(3):273-297, September 1995
C.-C. Chang and C.-J. Lin., 2001, "LIBSVM: a library for support vector machines," Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Fama, Eugene F., 1981, "Stock Returns, Real Activity, Inflation and Money," American Economic Review, 71, pp.545-565
Jaouida Elleuch, 2009, "Fundamental Analysis Strategy and the Prediction of Stock Returns, " International Research Journal of Finance and Economics, ISSN 1450-2887 Issue 30
J. A. Bendiktsson , P. H. Swain and O. K. Ersoy , 1990, "Neural network approaches versus statistical methods on classification of multisource remote sensing data", IEEE Trans. Geosci. Remote Sensing, vol. 28, pp.540 -552
Kuo, Mu-Hsing Chen, Chih-Lung , 2006, “An ETF Trading Decision Support System by Using Neural Network and Technical Indicators, ” International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, 2009, "The weka data mining software: An update," in Proc. of the 5th Australian Joint Conference on Artificial Intelligence, vol. 11, no. 1.
Orawan Ratanapakorna and Subhash C. Sharma, 2007, “Dynamic analysisbetween theUS stock returns and the macroeconomic variables, ” Applied FinancialEconomics, 17, 369–377
Phichhang Ou, Hengshang Wang, 2009, “Prediction of Stock Market Index Movement by Ten Data Mining Techniques, ” CCSE Modern Applied Science, Vol.3, No. 12
Shynkevich, Andrei, 2012, “Performance of technical analysis in growth and small cap segments of the US equity market, ” Journal of Banking & Finance, 36, pp.193-208
Yakup Kara, Melek Acar Boyacioglu, Ömer Kaan Baykan, 2011, “Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange, ” Expert Systems with Applications 38 (2011) 5311–5319

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊