|
[1]呂宗昕, 全面攻進奈米科技與太陽電池, 天下遠見出版, 臺北市 (2009). [2]C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phys. Lett. 48, 183 (1986). [3]M. Wright and A. Uddin, "Organic-inorganic hybrid solar cells: A comparative review," Sol. Energy Mater. Sol. Cells 107, 87 (2012). [4]B. C. Thompson and J. M. J. Fréchet, "Polymer-fullerene composite solar cells," Angew. Chem. Int. Ed. 47, 58 (2008). [5]C. F. Lin, W. F. Su, C. I. Wu, and I. C. Cheng, Organic, Inorganic and Hybrid Solar Cells: Principles and Practice, Wiley, New Jersey (2012). [6]H. Hoppe and N. S. Sariciftci, "Organic solar cells: An overview," J. Mater. Res. 19, 1924 (2004). [7]S. M. Mok, F. Yan, and H. L. W. Chan, "Organic phototransistor based on poly(3-hexylthiophene)/TiO2 nanoparticle composite," Appl. Phys. Lett. 93, 023310 (2008). [8]W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, "Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer," Adv. Mater. 16, 1009 (2004). [9]J. Pecher and S. Mecking, "Nanoparticles of conjugated polymers," Chem. Rev. 110, 6260 (2010). [10]S. R. Forrest, "The limits to organic photovoltaic cell efficiency," MRS Bull. 30, 28 (2005). [11]J. M. Nunzi, "Organic photovoltaic materials and devices," Comptes Rendus Physique 3, 523 (2002). [12]S. Günes, H. Neugebauer, and N. S. Sariciftci, "Conjugated polymer-based organic solar cells," Chem. Rev. 107, 1324 (2007). [13]張正華, 有機與塑膠太陽能電池, 五南圖書出版股份有限公司, 臺北市 (2007). [14]黃惠良, 太陽電池, 五南圖書出版股份有限公司, 臺北市 (2008). [15]柯賢文, 表面與薄膜處理技術, 全華科技圖書股份有限公司, 臺北市 (2005). [16]汪建民, 材料分析, 中國材料科學學會發行, 新竹市 (1998). [17]黃調元, 半導體元件物理與製作技術, 國立交通大學出版社, 新竹市 (2002). [18]曹侯焱, "射頻磁控濺鍍成長氧化鎂薄膜及其應用於閘極介電層特性研究," (國立彰化師範大學, 彰化縣, 2009). [19]D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis, Thomson Brooks/Cole, Belmont, CA (2007). [20]E. Mateos, V. L. Cebolla, L. Membrado, E. Piera, and M. A. Caballero, "Molecular weight distributions of industrially-produced poly-(ε-caprolactams) by gel permeation chromatography," J. Chromatogr. Sci. 45, 524 (2007). [21]G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nat. Mater. 4, 864 (2005). [22]F. Yakuphanoglu, M. Shah, and W. A. Farooq, "Electrical and interfacial properties of p-Si/P3HT organic-on-inorganic junction barrier," Acta Phys. Pol., A 120, 558 (2011). [23]J. Zhang, Y. Zhang, F. Zhang, and B. Sun, "Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)," Appl. Phys. Lett. 102 (2013). [24]D. Liu, Y. Zhang, X. Fang, F. Zhang, T. Song, and B. Sun, "An 11%-power-conversion-efficiency organic-inorganic hybrid solar cell achieved by facile organic passivation," IEEE Electron Device Letters 34, 345 (2013). [25]V. V. Brus, M. Zellmeier, X. Zhang, S. M. Greil, M. Gluba, A. J. Töfflinger, J. Rappich, and N. H. Nickel, "Electrical and photoelectrical properties of P3HT/n-Si hybrid organic-inorganic heterojunction solar cells," Org. Electron. 14, 3109 (2013). [26]P. Pingel, R. Schwarzl, and D. Neher, "Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene)," Appl. Phys. Lett. 100, 143303 (2012). [27]E. Lim, B. J. Jung, M. Chikamatsu, R. Azumi, Y. Yoshida, K. Yase, L. M. Do, and H. K. Shim, "Doping effect of solution-processed thin-film transistors based on polyfluorene," J. Mater. Chem. 17, 1416 (2007). [28]L. Ma, W. H. Lee, Y. D. Park, J. S. Kim, H. S. Lee, and K. Cho, "High performance polythiophene thin-film transistors doped with very small amounts of an electron acceptor," Appl. Phys. Lett. 92, 063310 (2008). [29]J. Sun, B. J. Jung, T. Lee, L. Berger, J. Huang, Y. Liu, D. H. Reich, and H. E. Katz, "Tunability of mobility and conductivity over large ranges in poly(3,3'''-didodecylquaterthiophene)/insulating polymer composites," ACS Appl. Mater. Interfaces 1, 412 (2009). [30]N. Lü, X. Lü, X. Jin, and C. Lü, "Preparation and characterization of UV-curable ZnO/polymer nanocomposite films," Polym. Int. 56, 138 (2007). [31]Y. J. Lin and Y. C. Su, "Modification of the electrical properties of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) upon doping of ZnO nanoparticles of different content," J. Appl. Phys. 111, 073712 (2012). [32]Y. J. Lin, T. H. Su, J. C. Lin, and Y. C. Su, "Photocurrent stability and responsivity in the n-type Si/ZnO-doped conducting polymer photovoltaic device," Synth. Met. 162, 406 (2012). [33]Y. J. Lin, C. L. Tsai, Y. C. Su, and D. S. Liu, "Carrier transport mechanism of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) films by incorporating ZnO nanoparticles," Appl. Phys. Lett. 100, 253302 (2012). [34]W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, "Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles," Adv. Funct. Mater. 16, 1112 (2006). [35]S. Venkataprasad Bhat, A. Govindaraj, and C. N. R. Rao, "Hybrid solar cell based on P3HT-ZnO nanoparticle blend in the inverted device configuration," Sol. Energy Mater. Sol. Cells 95, 2318 (2011). [36]N. G. Semaltianos, S. Logothetidis, N. Hastas, W. Perrie, S. Romani, R. J. Potter, G. Dearden, K. G. Watkins, P. French, and M. Sharp, "Modification of the electrical properties of PEDOT:PSS by the incorporation of ZnO nanoparticles synthesized by laser ablation," Chem. Phys. Lett. 484, 283 (2010). [37]R. J. Patel, T. B. Tighe, I. N. Ivanov, and M. A. Hickner, "Electro-optical properties of electropolymerized poly(3-hexylthiophene)/carbon nanotube composite thin films," J. Polym. Sci., Part B: Polym. Phys. 49, 1269 (2011). [38]V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, "Charge Transport in Organic Semiconductors," Chem. Rev. 107, 926 (2007). [39]H. Y. Tsao and Y. J. Lin, "Electronic properties of annealed pentacene films in air at various temperatures up to 400 K," Appl. Phys. Lett. 101, 113306 (2012). [40]Y. J. Lin, J. J. Zeng, and C. L. Tsai, "Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide," Appl. Phys. Lett. 101, 053305 (2012). [41]Y. Wang, J. Zhou, and R. Yang, "Thermoelectric Properties of Molecular Nanowires," J. Phys. Chem. C 115, 24418 (2011). [42]J. J. Zeng, C. L. Tsai, and Y. J. Lin, "Hybrid photovoltaic devices based on the reduced graphene oxide-based polymer composite and n-type GaAs," Synth. Met. 162, 1411 (2012). [43]J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, "Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si," Appl. Phys. Lett. 100, 153509 (2012). [44]G. D. Sharma, P. Suresh, P. Balaraju, S. K. Sharma, and M. S. Roy, "Charge transport and photocurrent generation in PPAT:ZnO bulk heterojunction photovoltaic devices," Synth. Met. 158, 400 (2008). [45]L. W. Ji, W. S. Shih, T. H. Fang, C. Z. Wu, S. M. Peng, and T. H. Meen, "Preparation and characteristics of hybrid ZnO-polymer solar cells," J. Mater. Sci. 45, 3266 (2010). [46]B. Riedel, Y. Shen, J. Hauss, M. Aichholz, X. Tang, U. Lemmer, and M. Gerken, "Tailored highly transparent composite hole-injection layer consisting of Pedot:PSS and SiO2 nanoparticles for efficient polymer light-emitting diodes," Adv. Mater. 23, 740 (2011). [47]Y. R. Park, Y. J. Lee, C. J. Yu, and J. H. Kim, "Investigations of the polymer alignment, the nonradiative resonant energy transfer, and the photovoltaic response of poly (3-hexylthiophene)/TiO2 hybrid solar cells," J. Appl. Phys. 108, 044508 (2010). [48]J. Maeng, M. Jo, S. J. Kang, M. K. Kwon, G. Jo, T. W. Kim, J. Seo, H. Hwang, D. Y. Kim, S. J. Park, and T. Lee, "Transient reverse current phenomenon in a p-n heterojunction comprised of poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) and ZnO nanowall," Appl. Phys. Lett. 93, 123109 (2008). [49]G. Gu and M. G. Kane, "Moisture induced electron traps and hysteresis in pentacene-based organic thin-film transistors," Appl. Phys. Lett. 92, 053305 (2008). [50]G. Gu, M. G. Kane, and S. C. Mau, "Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors," J. Appl. Phys. 101, 014504 (2007). [51]J. R. S. Aga, D. Jowhar, A. Ueda, Z. Pan, W. E. Collins, R. Mu, K. D. Singer, and J. Shen, "Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot," Appl. Phys. Lett. 91, 232108 (2007). [52]G. Horowitz, "Organic thin film transistors: From theory to real devices," J. Mater. Res. 19, 1946 (2004). [53]V. Kruefu, E. Peterson, C. Khantha, C. Siriwong, S. Phanichphant, and D. L. Carroll, "Flame-made niobium doped zinc oxide nanoparticles in bulk heterojunction solar cells," Appl. Phys. Lett. 97, 053302 (2010). [54]W. J. E. Beek, L. H. Slooff, M. M. Wienk, J. M. Kroon, and R. A. J. Janssen, "Hybrid solar cells using a zinc oxide precursor and a conjugated polymer," Adv. Funct. Mater. 15, 1703 (2005). [55]H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, "Influence of nanowires length on performance of crystalline silicon solar cell," Appl. Phys. Lett. 98, 151116 (2011). [56]H. J. Syu, S. C. Shiu, and C. F. Lin, "Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%," Sol. Energy Mater. Sol. Cells 98, 267 (2012). [57]L. Zeng, X. Yu, Y. Han, and D. Yang, "Performance of silicon nanowire solar cells with phosphorus-diffused emitters," J. Nanomater. 2012, 6 (2012). [58]T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, "Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency," Appl. Phys. Lett. 101, 033301 (2012). [59]Y. Wu, X. Zhang, J. Jie, C. Xie, B. Sun, Y. Wang, and P. Gao, "Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells," J. Phys. Chem. C 117, 11968 (2013). [60]W. M. Cho, Y. J. Lin, H. C. Chang, and Y. H. Chen, "Electronic transport for polymer/Si-nanowire arrays/n-type Si diodes with and without Si-nanowire surface passivation," Microelectron. Eng. 108, 24 (2013). [61]J. J. Zeng and Y. J. Lin, "Electrical and optoelectronic properties of graphene Schottky contact on Si-nanowire arrays with and without H2O2 treatment," Appl. Phys. A.Mater., 1 (2013). [62]A. Ogane, A. Kitiyanan, Y. Uraoka, and T. Fuyuki, "High-pressure water vapor heat treatment for enhancement of SiOx or SiNx passivation layers of silicon solar cells," Jpn. J. Appl. Phys. 48, 066504 (2009). [63]F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, "Methyl/allyl monolayer on silicon: Efficient surface passivation for silicon-conjugated polymer hybrid solar cell," ACS Appl. Mater. Interfaces 5, 4678 (2013). [64]H. Yu, L. J. Webb, R. S. Ries, S. D. Solares, W. A. Goddard Iii, J. R. Heath, and N. S. Lewis, "Low-temperature STM images of methyl-terminated Si(111) surfaces," J. Phys. Chem. B 109, 671 (2005).
|