跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:金益民
論文名稱:聚3-己烷噻吩:氧化鋅奈米粒子混合薄膜之光電特性研究
論文名稱(外文):Optoelectronic properties of the poly(3-hexylthiophene):ZnO nanoparticles composite thin films
指導教授:林祐仲
指導教授(外文):Yow-Jon Lin
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:光電科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:90
中文關鍵詞:有機太陽能電池聚3-己烷噻吩氧化鋅奈米粒子遷移率霍爾效應光響應缺陷捕捉奈米線
外文關鍵詞:organic solar cellP3HTZnO nanoparticlemobilityHall effectphotoresponsecharge trappingnanowires
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將分別進行三個實驗,第一個實驗探討將不同比例的氧化鋅奈米粒子摻入聚3-己烷噻吩[poly(3-hexylthiophene)]溶液中,透過凝膠滲透層析儀與拉曼光譜驗證氧化鋅奈米粒子摻入聚3-己烷噻吩中的影響,接著利用變溫霍爾觀測系統,觀察其載子遷移率與溫度的關係,從實驗結果發現導電率隨著氧化鋅奈米粒子的增加而增加,導電率的增加主要來自於載子遷移率的提升。透過極化子理論分析顯示氧化鋅奈米粒子摻入聚3-己烷噻吩會使分子之間的間距增加,進而提升載子遷移率。在第二個實驗,則是將不同比例的氧化鋅奈米粒子摻入聚3-己烷噻吩與n型矽基板製作混成二極體元件,藉由元件之光響應實驗探討載子的傳輸機制,由聚3-己烷噻吩二極體與有機薄膜電晶體的電荷釋放與捕捉說明光電流產生模式。而第三個實驗,則是將不同比例的氧化鋅奈米粒子摻入聚3-己烷噻吩並塗佈於矽奈米線製作另一型混成二極體元件,主要是由於矽奈米線具有較優越的光注入特性,並探討氧化鋅奈米粒子摻入聚3-己烷噻吩塗佈於矽奈米線元件之光電特性。
In this study, three topics of issue are discussed. In the first experiment, the effects of the incorporation of ZnO nanoparticles into poly(3-hexylthiophene) (P3HT) was investigated. Hall measurements were performed for demonstrating the carrier conduction mechanism. From the experimental results, conductivity proportional to ZnO doping was observed. The improvement of conductivity is considered to mainly come from a mobility enhancement. Hall-effect analysis by using the polaron theory revealed that ZnO doping might lead to an increased spacing between molecules, thus enhancing the carrier mobility. In the second experiment, the ZnO-doped P3HT/n-type Si diode was fabricated. The effect of ZnO doping on the optical and electrical properties of ZnO-doped P3HT/n-type Si diodes was examined. Charge detrapping/trapping phenomena are studied through time domain measurement for P3HT-based diodes and thin-film transistors. ZnO influences the photoresponse by providing additional holes that serve to reduce the photocurrent time constant. In the third experiment, the ZnO-doped P3HT/Si nanowire arrays/n-type Si diode was fabricated. This is because of SiNWs having a more significant contribution to light injection. The effect of ZnO doping on the optical and electrical properties of ZnO-doped P3HT/Si nanowire arrays/n-type Si diodes was examined.
目錄 II
圖目錄 VI
表目錄 IX
摘要 X
Abstract XI
誌謝 XII
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池的演進與發展 3
1.3 太陽能電池的種類 5
1.4 有機太陽能電池工作機制 8
1.5 太陽能電池各參數簡介 12
1.6 空氣質量 14
1.7 論文架構 16
第二章 實驗儀器與儀器原理 18
2.1 直流濺鍍機 18
2.2 拉曼光譜儀 20
2.2.1 拉曼光譜原理 20
2.2.2 拉曼儀器架構 21
2.3 霍爾量測系統 24
2.4 薄膜旋轉塗佈成膜 27
2.5 橢圓儀量測原理與應用 28
2.5.1 橢圓儀量測原理 29
2.5.2 橢圓偏光儀之儀器架構簡介 31
2.6 原子力顯微鏡 34
2.7 凝膠滲透層析儀 36
2.8 電流-電壓量測法 37
2.9 模擬太陽光源系統 38
第三章 實驗步驟 39
3.1 實驗儀器 39
3.2 實驗材料 40
3.2.1 有機材料 40
3.2.2 ZnO奈米粒子 41
3.2.3 矽基板 41
3.3 P3HT溶液製備 42
3.4 ZnO奈米粒子溶液製備 43
第四章 ZnO奈米粒子摻入P3HT提升載子遷移率 44
4.1 前言 44
4.2 實驗流程 47
4.3 結果與討論 49
4.4 結論 56
第五章 ZnO奈米粒子摻入P3HT/n-Si提升光電流 57
5.1 前言 57
5.2 實驗流程 59
5.3 結果與討論 62
5.4 結論 71
第六章 ZnO奈米粒子摻入P3HT/SiNWs/n-Si光電特性 72
6.1 前言 72
6.2 實驗流程 73
6.3 結果與討論 75
6.4 結論 79
第七章 總結論 80
參考文獻 82
圖目錄
圖1 1.太陽能電池的分類。 6
圖1 2.有機太陽能電池工作機制。 11
圖1 3.太陽能電池各項參數示意圖,a為未照光電流-電壓曲線,b為照光下的電流-電壓曲線。 13
圖1 4.太陽位置與空氣質量的定義。 16
圖2 1.直流濺鍍示意圖。 19
圖2 2.拉曼散射的機制。 21
圖2 3.(a)光子計數器及利用(b)光學多頻道分析儀的拉曼光譜儀。 23
圖2 4.利用霍爾效應量測載子濃度的基本裝置。 26
圖2 5.偏振光束在界面或薄膜上反射或穿透時出現的偏振轉換。 30
圖2 6.橢圓偏光儀示意圖。 32
圖2 7.電流-電壓量測機台型號是Keithley Model-4200-SCS/F。 37
圖2 8.模擬太陽光源。 38
圖3 1.P3HT的化學結構。 40
圖4 1.ZnO奈米粒子摻入P3HT的薄膜結構示意圖。 48
圖4 2.凝膠滲透層析儀量測P3HT分子量。 50
圖4 3.ZnO奈米粒子摻入P3HT量測拉曼頻譜[(a) P3HT、(b) P3HT:ZnO(I)和(c) P3HT:ZnO(II)]。 52
圖4 4.電阻率對溫度關係[(a) P3HT、(b) P3HT:ZnO(I)和(c) P3HT:ZnO(II)]。 54
圖4 5.載子濃度對溫度關係[(a) P3HT、(b) P3HT:ZnO(I)和(c) P3HT:ZnO (II)]。 55
圖4 6.載子遷移率對溫度關係[(a) P3HT、(b) P3HT:ZnO(I)和(c) P3HT:ZnO (II)]。 55
圖5 1.元件結構示意圖。 61
圖5 2.以OTFT結構製作之元件示意圖。 61
圖5 3.光響應:電流-時間關係,重複切換光源開關[(a) P3HT、(b) P3HT:ZnO(I)和(c) P3HT:ZnO(II)]。 63
圖5 4.(a) P3HT、(b) P3HT:ZnO(I)和(c) P3HT:ZnO(II)施加VINGS= 40 V;(d) P3HT,(e) P3HT:ZnO(I)和(f) P3HT:ZnO(II)施加VINGS= -40 V光響應:汲極電流-時間關係。 66
圖5 5.照光下的J-V曲線[(a) P3HT、(b) P3HT:ZnO(I)和(c) P3HT:ZnO(II)]。 68
圖5 6.AFM圖[(a) P3HT、(b) P3HT:ZnO(I)和(c) P3HT:ZnO(II)]。 70
圖6 1.元件結構示意圖。 74
圖6 2.(a)以SEM觀測蝕刻時間為15分鐘矽奈米線的剖面結構圖,(b)以SEM觀測蝕刻時間為15分鐘矽奈米線的表面形貌圖。 75
圖6 3.矽基板經過蝕刻成矽奈米線前後之反射率,[(a)矽基板和(b)矽奈米線試片]。 76
圖6 4.照光下的J-V曲線,[(a) P3HT、(b) P3HT:ZnO(I)和(c) P3HT:ZnO(II)]。 78
表目錄
表1 1.再生能源比較。 2
表4 1.P3HT超音波振盪前後分子量。 51
表4 2.穿隧遷移率公式擬合參數結果。 56
表5 1.以P3HT製作OTFT元件結構汲極電流-時間特性曲線擬合參數。 67
表5 2.P3HT/n-Si、P3HT:ZnO(I)/n-Si和P3HT:ZnO(II)/n-Si在照光下的元件特性參數。 68
表6 1.P3HT/SiNWs/n-Si、P3HT:ZnO(I)/SiNWs/n-Si和P3HT:ZnO(II)/ SiNWs/n-Si在照光下的元件特性參數。 78
[1]呂宗昕, 全面攻進奈米科技與太陽電池, 天下遠見出版, 臺北市 (2009).
[2]C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phys. Lett. 48, 183 (1986).
[3]M. Wright and A. Uddin, "Organic-inorganic hybrid solar cells: A comparative review," Sol. Energy Mater. Sol. Cells 107, 87 (2012).
[4]B. C. Thompson and J. M. J. Fréchet, "Polymer-fullerene composite solar cells," Angew. Chem. Int. Ed. 47, 58 (2008).
[5]C. F. Lin, W. F. Su, C. I. Wu, and I. C. Cheng, Organic, Inorganic and Hybrid Solar Cells: Principles and Practice, Wiley, New Jersey (2012).
[6]H. Hoppe and N. S. Sariciftci, "Organic solar cells: An overview," J. Mater. Res. 19, 1924 (2004).
[7]S. M. Mok, F. Yan, and H. L. W. Chan, "Organic phototransistor based on poly(3-hexylthiophene)/TiO2 nanoparticle composite," Appl. Phys. Lett. 93, 023310 (2008).
[8]W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, "Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer," Adv. Mater. 16, 1009 (2004).
[9]J. Pecher and S. Mecking, "Nanoparticles of conjugated polymers," Chem. Rev. 110, 6260 (2010).
[10]S. R. Forrest, "The limits to organic photovoltaic cell efficiency," MRS Bull. 30, 28 (2005).
[11]J. M. Nunzi, "Organic photovoltaic materials and devices," Comptes Rendus Physique 3, 523 (2002).
[12]S. Günes, H. Neugebauer, and N. S. Sariciftci, "Conjugated polymer-based organic solar cells," Chem. Rev. 107, 1324 (2007).
[13]張正華, 有機與塑膠太陽能電池, 五南圖書出版股份有限公司, 臺北市 (2007).
[14]黃惠良, 太陽電池, 五南圖書出版股份有限公司, 臺北市 (2008).
[15]柯賢文, 表面與薄膜處理技術, 全華科技圖書股份有限公司, 臺北市 (2005).
[16]汪建民, 材料分析, 中國材料科學學會發行, 新竹市 (1998).
[17]黃調元, 半導體元件物理與製作技術, 國立交通大學出版社, 新竹市 (2002).
[18]曹侯焱, "射頻磁控濺鍍成長氧化鎂薄膜及其應用於閘極介電層特性研究," (國立彰化師範大學, 彰化縣, 2009).
[19]D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis, Thomson Brooks/Cole, Belmont, CA (2007).
[20]E. Mateos, V. L. Cebolla, L. Membrado, E. Piera, and M. A. Caballero, "Molecular weight distributions of industrially-produced poly-(ε-caprolactams) by gel permeation chromatography," J. Chromatogr. Sci. 45, 524 (2007).
[21]G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nat. Mater. 4, 864 (2005).
[22]F. Yakuphanoglu, M. Shah, and W. A. Farooq, "Electrical and interfacial properties of p-Si/P3HT organic-on-inorganic junction barrier," Acta Phys. Pol., A 120, 558 (2011).
[23]J. Zhang, Y. Zhang, F. Zhang, and B. Sun, "Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)," Appl. Phys. Lett. 102 (2013).
[24]D. Liu, Y. Zhang, X. Fang, F. Zhang, T. Song, and B. Sun, "An 11%-power-conversion-efficiency organic-inorganic hybrid solar cell achieved by facile organic passivation," IEEE Electron Device Letters 34, 345 (2013).
[25]V. V. Brus, M. Zellmeier, X. Zhang, S. M. Greil, M. Gluba, A. J. Töfflinger, J. Rappich, and N. H. Nickel, "Electrical and photoelectrical properties of P3HT/n-Si hybrid organic-inorganic heterojunction solar cells," Org. Electron. 14, 3109 (2013).
[26]P. Pingel, R. Schwarzl, and D. Neher, "Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene)," Appl. Phys. Lett. 100, 143303 (2012).
[27]E. Lim, B. J. Jung, M. Chikamatsu, R. Azumi, Y. Yoshida, K. Yase, L. M. Do, and H. K. Shim, "Doping effect of solution-processed thin-film transistors based on polyfluorene," J. Mater. Chem. 17, 1416 (2007).
[28]L. Ma, W. H. Lee, Y. D. Park, J. S. Kim, H. S. Lee, and K. Cho, "High performance polythiophene thin-film transistors doped with very small amounts of an electron acceptor," Appl. Phys. Lett. 92, 063310 (2008).
[29]J. Sun, B. J. Jung, T. Lee, L. Berger, J. Huang, Y. Liu, D. H. Reich, and H. E. Katz, "Tunability of mobility and conductivity over large ranges in poly(3,3'''-didodecylquaterthiophene)/insulating polymer composites," ACS Appl. Mater. Interfaces 1, 412 (2009).
[30]N. Lü, X. Lü, X. Jin, and C. Lü, "Preparation and characterization of UV-curable ZnO/polymer nanocomposite films," Polym. Int. 56, 138 (2007).
[31]Y. J. Lin and Y. C. Su, "Modification of the electrical properties of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) upon doping of ZnO nanoparticles of different content," J. Appl. Phys. 111, 073712 (2012).
[32]Y. J. Lin, T. H. Su, J. C. Lin, and Y. C. Su, "Photocurrent stability and responsivity in the n-type Si/ZnO-doped conducting polymer photovoltaic device," Synth. Met. 162, 406 (2012).
[33]Y. J. Lin, C. L. Tsai, Y. C. Su, and D. S. Liu, "Carrier transport mechanism of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) films by incorporating ZnO nanoparticles," Appl. Phys. Lett. 100, 253302 (2012).
[34]W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, "Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles," Adv. Funct. Mater. 16, 1112 (2006).
[35]S. Venkataprasad Bhat, A. Govindaraj, and C. N. R. Rao, "Hybrid solar cell based on P3HT-ZnO nanoparticle blend in the inverted device configuration," Sol. Energy Mater. Sol. Cells 95, 2318 (2011).
[36]N. G. Semaltianos, S. Logothetidis, N. Hastas, W. Perrie, S. Romani, R. J. Potter, G. Dearden, K. G. Watkins, P. French, and M. Sharp, "Modification of the electrical properties of PEDOT:PSS by the incorporation of ZnO nanoparticles synthesized by laser ablation," Chem. Phys. Lett. 484, 283 (2010).
[37]R. J. Patel, T. B. Tighe, I. N. Ivanov, and M. A. Hickner, "Electro-optical properties of electropolymerized poly(3-hexylthiophene)/carbon nanotube composite thin films," J. Polym. Sci., Part B: Polym. Phys. 49, 1269 (2011).
[38]V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, "Charge Transport in Organic Semiconductors," Chem. Rev. 107, 926 (2007).
[39]H. Y. Tsao and Y. J. Lin, "Electronic properties of annealed pentacene films in air at various temperatures up to 400 K," Appl. Phys. Lett. 101, 113306 (2012).
[40]Y. J. Lin, J. J. Zeng, and C. L. Tsai, "Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide," Appl. Phys. Lett. 101, 053305 (2012).
[41]Y. Wang, J. Zhou, and R. Yang, "Thermoelectric Properties of Molecular Nanowires," J. Phys. Chem. C 115, 24418 (2011).
[42]J. J. Zeng, C. L. Tsai, and Y. J. Lin, "Hybrid photovoltaic devices based on the reduced graphene oxide-based polymer composite and n-type GaAs," Synth. Met. 162, 1411 (2012).
[43]J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, "Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si," Appl. Phys. Lett. 100, 153509 (2012).
[44]G. D. Sharma, P. Suresh, P. Balaraju, S. K. Sharma, and M. S. Roy, "Charge transport and photocurrent generation in PPAT:ZnO bulk heterojunction photovoltaic devices," Synth. Met. 158, 400 (2008).
[45]L. W. Ji, W. S. Shih, T. H. Fang, C. Z. Wu, S. M. Peng, and T. H. Meen, "Preparation and characteristics of hybrid ZnO-polymer solar cells," J. Mater. Sci. 45, 3266 (2010).
[46]B. Riedel, Y. Shen, J. Hauss, M. Aichholz, X. Tang, U. Lemmer, and M. Gerken, "Tailored highly transparent composite hole-injection layer consisting of Pedot:PSS and SiO2 nanoparticles for efficient polymer light-emitting diodes," Adv. Mater. 23, 740 (2011).
[47]Y. R. Park, Y. J. Lee, C. J. Yu, and J. H. Kim, "Investigations of the polymer alignment, the nonradiative resonant energy transfer, and the photovoltaic response of poly (3-hexylthiophene)/TiO2 hybrid solar cells," J. Appl. Phys. 108, 044508 (2010).
[48]J. Maeng, M. Jo, S. J. Kang, M. K. Kwon, G. Jo, T. W. Kim, J. Seo, H. Hwang, D. Y. Kim, S. J. Park, and T. Lee, "Transient reverse current phenomenon in a p-n heterojunction comprised of poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) and ZnO nanowall," Appl. Phys. Lett. 93, 123109 (2008).
[49]G. Gu and M. G. Kane, "Moisture induced electron traps and hysteresis in pentacene-based organic thin-film transistors," Appl. Phys. Lett. 92, 053305 (2008).
[50]G. Gu, M. G. Kane, and S. C. Mau, "Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors," J. Appl. Phys. 101, 014504 (2007).
[51]J. R. S. Aga, D. Jowhar, A. Ueda, Z. Pan, W. E. Collins, R. Mu, K. D. Singer, and J. Shen, "Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot," Appl. Phys. Lett. 91, 232108 (2007).
[52]G. Horowitz, "Organic thin film transistors: From theory to real devices," J. Mater. Res. 19, 1946 (2004).
[53]V. Kruefu, E. Peterson, C. Khantha, C. Siriwong, S. Phanichphant, and D. L. Carroll, "Flame-made niobium doped zinc oxide nanoparticles in bulk heterojunction solar cells," Appl. Phys. Lett. 97, 053302 (2010).
[54]W. J. E. Beek, L. H. Slooff, M. M. Wienk, J. M. Kroon, and R. A. J. Janssen, "Hybrid solar cells using a zinc oxide precursor and a conjugated polymer," Adv. Funct. Mater. 15, 1703 (2005).
[55]H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, "Influence of nanowires length on performance of crystalline silicon solar cell," Appl. Phys. Lett. 98, 151116 (2011).
[56]H. J. Syu, S. C. Shiu, and C. F. Lin, "Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%," Sol. Energy Mater. Sol. Cells 98, 267 (2012).
[57]L. Zeng, X. Yu, Y. Han, and D. Yang, "Performance of silicon nanowire solar cells with phosphorus-diffused emitters," J. Nanomater. 2012, 6 (2012).
[58]T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, "Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency," Appl. Phys. Lett. 101, 033301 (2012).
[59]Y. Wu, X. Zhang, J. Jie, C. Xie, B. Sun, Y. Wang, and P. Gao, "Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells," J. Phys. Chem. C 117, 11968 (2013).
[60]W. M. Cho, Y. J. Lin, H. C. Chang, and Y. H. Chen, "Electronic transport for polymer/Si-nanowire arrays/n-type Si diodes with and without Si-nanowire surface passivation," Microelectron. Eng. 108, 24 (2013).
[61]J. J. Zeng and Y. J. Lin, "Electrical and optoelectronic properties of graphene Schottky contact on Si-nanowire arrays with and without H2O2 treatment," Appl. Phys. A.Mater., 1 (2013).
[62]A. Ogane, A. Kitiyanan, Y. Uraoka, and T. Fuyuki, "High-pressure water vapor heat treatment for enhancement of SiOx or SiNx passivation layers of silicon solar cells," Jpn. J. Appl. Phys. 48, 066504 (2009).
[63]F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, "Methyl/allyl monolayer on silicon: Efficient surface passivation for silicon-conjugated polymer hybrid solar cell," ACS Appl. Mater. Interfaces 5, 4678 (2013).
[64]H. Yu, L. J. Webb, R. S. Ries, S. D. Solares, W. A. Goddard Iii, J. R. Heath, and N. S. Lewis, "Low-temperature STM images of methyl-terminated Si(111) surfaces," J. Phys. Chem. B 109, 671 (2005).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊