|
1. 邱弘毅.腦中風之現況與流行病學特徵 台灣腦中風學會會刊 2008年,第15 卷,第3期 2-3。 2. J.W. Choi, D. R. Herr, et al. LPA Receptors: Subtypes and Biological Actions. Annu. Rev. Pharmacol. Toxicol. 2010 50:157–186. 3. D.R. Herr, J. Chun Effects of LPA and S1P on the Nervous System and Implications for Their Involvement in Disease. Curr. Drug Targets 2007 8: 155-167. 4. G. Tigyi Selective Ligands for Lysophosphatidic Acid Receptor Subtypes: Gaining Control over the Endothelial Differentiation Gene Family. Mol. Pharmacol. 2011 60: 1161–1164. 5. D. M. Heringdorf, K. H. Jakobs Lysophospholipid receptors: Signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim. Biophys. Acta 2007 923–940. 6. J. Jonkers, W. H. Moolenaar Mammary Tumorigenesis through LPA Receptor Signaling. Cancer Cell 2009 15: 457-458. 7. M. Yang, W. W. Zhong et al. G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the b-catenin pathway. Proc. Natl. Acad. Sci. U.S.A. 2005 102: 6027–6032. 8. B. de Vries, R.A. Matthijsen et al. Lysophosphatidic Acid Prevents Renal Ischemia29 Reperfusion Injury by Inhibition of Apoptosis and Complement Activation. Am. J. Pathol. 2003 163:47–56. 9. O. Murch, M. Collin et al. Lysophosphatidic acid reduces the organ injury caused by endotoxemia-A role for G-protein-coupled receptors and peroxisome proliferators-activated receptor- Shock 2007 27: 48-54. 10. C. Zhang, D. L. Baker et al. Lysophosphatidic Acid Induces Neointima Formation Through PPAR-g Activation. J. Exp. Med. 2004 199: 763–774. 11. A.L. Parrill Structural characteristics of lysophosphatidic acid biological targets. Biochem. Soc. Trans. 2005 33:1366-1369. 12. T. M. McIntyre, A. V. Pontsler et al. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARg agonist. Proc. Natl. Acad. Sci. U.S.A. 2003 100: 131-136. 13. M. Okazaki, F. Kreiselb et al. Sphingosine 1-Phosphate Inhibits Ischemia Reperfusion Injury Following Experimental Lung Transplantation. Am. J. Transplant. 2007 7: 751–758. 14. T. Iwasaki, S. Tsunemi et al. Role of sphingosine 1-phosphate signaling for the pathogenesis of autoimmune diseases. Inflammation and Regeneration 2011 31: 175-183. 15. Y. Hasegawa, H. Suzuki et al. Activation of Sphingosine 1-Phosphate Receptor-1 by 30 FTY720 Is Neuroprotective After Ischemic Stroke in Rats. Stroke 2010 41:368-374. 16. A. Kehlen, R. Lautebach et al: IL-1b- and IL-4-induced down-regulation of autotaxin mRNA and PC-1 in fibroblast-like synoviocytes of patients with rheumatoid arthritis (RA). Clin. Exp. Immunol. 2001 123:147-154. 17. J. H. Garcia, S. Wagner et al. Neurological Deficit and Extent of Neuronal Necrosis Attributable to Middle Cerebral Artery Occlusion in Rats. Stroke 1995 26:627-635. 18. N. J. Spratt et al: Modification of the method of thread manufacture improved stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. J. Neur. Meth. 2006 155: 285-290. 19. K. Kitagawa, M. Matsumato et al. Cerebral Ischemia After Bilateral Carotid Artery occlusion and Intraluminal Suture Occlusion in Mice: Evaluation of the Patency of the Posterior Communicating Artery. J. Cereb. Blood Flow Metab. 1998 18:570-579. 20. T.N. Lin, Y.Y. He et al. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rat. Stroke 1993 24: 117-121. 21. R.C.G. Herz, C.M. Kasbergen et al. Rat middle cerebral artery occlusion by an intraluminal thread compromises collateral blood flow. Brain Res. 1998 791: 223–228. 22. M. D. Ginsberg, R. Busto. Rodent Models of Cerebral Ischemia. Stroke 1989 20: 1627-1642. 23. E. Candelario-Jalil, N.H. Mhadu et al. Effects of the cyclooxygenase-2 inhibitor nimesulide on cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion in the rat. J. Neuroinflammation 2005 18: 121-132. 24. A. Durukan, T. Tatlisumak: Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol. Biochem. Behav. 2007 87:179–197. 25. S. Orta, S. Arter et al. Middle Cerebral Artery Occlusion of Rats: Pathological and Neurological Evaluation of the Model. Turk. Neurosurg. 1999 9: 52-58. 26. J. B. Bederson, L.H. Pitts et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986 17: 472-476. 27. R. J. Laing, J. Jakubowski et al. Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke 1993 24: 294-298. 28. S. Shimizu, R.P. Simon et al. Dimethylsulfoxide (DMSO) treatment reduces infarction volume after permanent focal cerebral ischemia in rats. Neurosci. Lett. 1997 239:125–127. 29. R. Rivera, J. Chun. Biological effects of lysophospholipids. Rev. Physiol. Biochem. Pharmacol. 2006 160: 25–46. 30. C. E. Heise, W.L. Santos et al. Activity of 2-Substituted Lysophosphatidic Acid (LPA) Analogs at LPA Receptors: Discovery of a LPA1/LPA3 Receptor Antagonist Mol. Pharmacol. 2001 60:1173–1180.
|