跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭筱涵
研究生(外文):Peng Hsiao-Han
論文名稱:含銅(II)及鈀(II)之咪唑鹽類的液晶相性質研究
論文名稱(外文):Liquid Crystalline Properties of Copper(II) and Palladium(II) Complexes Containing 1,3-dialkylimidazolium Salts
指導教授:林志彪林志彪引用關係
指導教授(外文):Ivan J. B. Lin
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:105
中文關鍵詞:液晶銅(II)及鈀(II)金屬液晶咪唑鹽類
外文關鍵詞:liquid crystalscopper(II) and palladium(II)imidazolium salts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是研究含銅(II)及鈀(II)之長碳鏈咪唑鹽類[(Cn)2-imyH]2[MCl4] (M= Pd, Cu; n= 8,10,12,14,16,18) 的合成與其液晶相性質研究。並以碳數12為例,解出同樣具有四配位之銅(II)及鈀(II)錯合物的晶體結構,兩者分別具有扭曲四面體和平面四邊形之不同金屬中心結構與分子堆疊方式。液晶相性質主要以偏光顯微鏡 (POM) 和微差掃描卡計 (DSC) 做鑑定,由POM上所得之扇形紋理(fan texture)以及很容易有垂直配向(homeotropic)的現象,再配合X-ray繞射分析 (XRD) 判定為層列形液晶相。隨著碳數的增加,相轉變溫度隨之提高,且以接上鈀之轉變溫度較高。當碳數為8時,銅錯合物無液晶相。此系列錯合物在進入澄清點後產生熱分解,碳數愈低者情況愈嚴重,甚至在進入液晶相後即發生熱分解,若將[(C12)2-imyH]2[PdCl4]換成 [(C12)2-imyH]2 [PdBr4],熱穩定性提高。以1H-NMR、13C-NMR、TGA和FAB/MS追蹤其熱分解現象,當鈀(II)錯合物熱分解後,除了殘留的原始物種外,產生五種不同的化合物,分別為 Pd[(Cn)2-imy]2Cl2,Pd(Cn-imy)2Cl2,[(Cn)2-imyH]Cl,Cn-Im,[(Cn)2-imy]2,而銅(II)錯合物在熱分解後除了尚未分解的原始錯合物外,產生了Cu[(Cn)2-imy]2Cl2 . H2O,[(Cn)2-imyH]Cl,Cn-Im,但與鈀(II)錯合物不同,沒有出現Cu(Cn-imy)2Cl2,[(Cn)2-imy]2,卻發現有(Cn)2-imyCl的存在。銅(II)為d9順磁性,以電子自旋光譜(ESR)做磁性的測量,在低溫(77K)固態時測得三組g值,屬菱形壓縮形式(rhombic-compressed)。另外,亦將原錯合物混入第二物種 (水,氰化甲烷,咪唑鹽類) 做液相性液晶的探討,發現液晶相轉變溫度降低,且可穩定原錯合物的熱分解情況,但混一般有機溶劑的效果並不理想,而混入咪唑鹽類的效果最佳,其液晶相亦為SmA相。
Palladium(II) and copper(II) complexes ([(Cn)2-imyH][MCl4] , n = 8, 10,12, 14, 16, 18 ) were synthesized, and their liquid crystalline properties investigated. Two compounds, [(C12)2-imyH]2[CuCl4] and [(C12)2-imyH]2 [PdCl4] were structurally determined by single crystal X-ray diffraction. Tetra-chloropallate adopts a square-planar geometry while tetrachlorocuprate has a distorted tetrahedral structure. Liquid crystalline behavior of these compounds was studied by differential scanning calorimetry and polarized optical microscopy. The typical fan texture, the spontaneous homeotropic, and the X-ray diffraction results, suggest a smectic mesophase. Both the melting and isotropic transition temperatures increase with the alkyl chain lengths, and the palladium(II) complexes always have higher phase transition temperatures than those of the copper(II) ones. When n=8, there is no mesophase in copper(II) complex. All these compounds decomposed above clearing temperatures, therefore only the heating cycle is reported. Thermal decompositions are severe with shorter chains. Compounds with PdBr42- anion have better thermal stability than the corresponding PdCl42- complexes. Decomposition reactions were traced by 1H-NMR, FAB, TGA. The powder EPR spectrum at 77K suggests that the paramagnetic copper(II) complexes are rhombic-compressed with three different g-values. Lyotropic properties of these compounds are also investigated. Mixing with water or imidazolium salts, the melting and the clearing temperatures decrease. Mixing with imidazolium salts provides wider temperature ranges of mesophase than those with water. SmA phase is also observed for these lyotropic systems.
目錄:
中文摘要…………………………………………........1
英文摘要………………………………………….......2
壹 前言…………………………………………......... 3
貳 研究動機……………………………………......... 6
參 實驗部分……………………………………......... 9
3-1儀器……………………………………................. 9
3-2藥品…………………………………….................. 9
3-3實驗部分…………………………………............. 10
3-3.1 配位基的合成…………………………............. 10
3-3.2 錯合物的合成………………………….............. 12
肆 結果與討論………………………….....18
4-1合成部分……………………………….18
4-2晶體結構………………………………..21
4-3液晶相…………………………………..26
4-3.1熱向性液晶相………………………...26
4-3.2 X-ray繞射分析………………………..31
4-3.3 液向性液晶…………………………..33
水為溶劑之液向性液晶………..33
混入咪唑鹽類之液向性液晶…. 35
4-4 熱分解情況……………… ...44
4-4.1 NMR結果……………………………..44
4-4.2 TGA結果……………………………...47
4-4.3 FAB/MS結果……………………….....48
4-5 銅(II)磁性的測量………………….........51
伍 總結……………………………………………........53
陸 參考資料………………………………………..... ..55
1. (a) R. G. Weiss, Tetrahedron, 1988, 44, 3413. (b) P. Espinet, M. A. Esteruelas, L. A. Serrano, E. Sola, Coord. Chem. Rev. 1992, 117, 215.
2. (a) S. A. Hudson, P. M. Maitlis, Chem. Rev., 1993, 93, 861. (b) A. S. Sonin, J. Mater. Chem., 1998, 8,2557.
3. (a) P. J. Collings, M. Hird, Introduction to Liquid Crystals, 1997, p133 -139. (b) T. Engels, W. von Rybinski, J. Mater. Chem., 1998, 8(6), 1313.
4. (a) C. J. Bowals, D. W. Bruce, and K. R. Seddon, Chem. Commun., 1996, 1625 (b) J. D. Holbrey, K. R. Seddon, J. Chem. Soc. Dalton. Trans., 1999, 2133. (c) F. Neve, Adv. Mater. 1996, 8, 277.
5. (a) J. L. Serrano, Metallomesogen, Vch, Weinheim, 1995 (b) A. M. GiroudGodquin, P. M. Maitlis, Angew. Chem. Int. Ed. Engl., 1991, 30, 375.
6. (a) J. Apps, K. R. seddon, J. Brennecke, L. Moens, R. Rogers, J. Swindall, Chemistry Summer, 1999, 12. (b) T. Welton, Chem. Rev., 1999, 99, 2071.
7. (a) C. J. Adams, M. J. Earle, K. R. seddon, Chem. Commun., 1999, 1043. (b) P. J. Dyson, D. J. Ellis, D. G. Parker, T. Welton, Chem. Commun., 1999, 25. (c) M. J. Earle, P. B. McCormac, K. R. Seddon., Chem. Commun., 1998, 2245. (d) C. J. Adams, M. J. Earle, G. Roberts, and K. R. Seddon., Chem Commun., 1998, 2097. (e) L. Xu, W. Chen, J. Xiao, Organometallics, 2000, 19, 1123.
8. (a) J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, R. D. Rogers, Chem. Commun., 1998, 1765. (b) C. M. Gordon, A. McCluskey, Chem. Commun., 1999, 1431.
9. C. M. Gordon, J. D. Holbrey. A. R. Kennedy, K. R. Seddon, J. Mater. Chem., 1998, 8, 2627.
10. (a) R. L. Harlow, W. J. Wells, III, G. W. Watt, and S. H. Simone-sen, Inorg. Chem, vol 13, No. 9, 1974, 2106. (b) K. E. Halvorson, C. Patterson, and R. D. Willett, Acta. Cryst., 1990, B46, 508. (c) D. W. Smith, Coord. Chem Rev., 1976, 21, 93. (d) M. Wei, R. D. Willett, K. W. Hipps, Inorg. Chem., 1996, 35, 3500. (e) G. F. Needham, R. D. Willett, H. F. Franzen, J. Phys. Chem., 1984, 88, 674.
11. J. E. L. Dullius, P. A. Z. Suarez, S. Einloft, R. F. de Souza, J. Dupont, Organometallics, 1998, 17, 815.
12. M. Hasan, I. V. Kozhevnikov, M. R. H. Siddiqui, A. Steiner, and N. Winterton, Inorg. Chem., 1999, 5637.
13. P. B. Hitchcock, K. R. Seddon, T. Welton, J. Chem. Soc. Dalton Trans. 1993, 2639.
14. F. Neve, A. Crispini, and S. Armentano, Chem. Mater., 1998, 10, 1904.
15. K. M. Lee, C. M. Lee, Ivan J. B. Lin, Chem. Commun., 1997, 899.
16. F. Neve, A. Crispini, and O. Francescangeli, Inorg. Chem., 2000, 39(6), 1187.
17. R. Taylor, O. Kennard, J. Am. Chem. Soc., 1982, 104, 5063.
18. (a) M. Kobel, C. Tschierske, S. Diele, Chem. Commun., 1998, 1511. (b) S. Ujiie, Y. Yano, Chem. Commun., 2000, 79. (c) O. S. Fiho, R. Itri, L. Q. Amaral, J. Phys. Chem. B, 2000, 104, 959. (d) D. Hantzschel, J. Schulte, S. Enders, K. Quitzschel, Phys. Chem. Chem. Phys., 1999, 1,895.
19. C. K. Lee, Jack C. C. Chen, K. M. Lee, C. W. Liu, Inva J. B. Lin, Chem. Mater., 1999, 11, 1237.
20. (a) M. J. Colaneri, J. Peisach, J. Am. Chem. Soc., 1995, 117, 6308. (b) W. K. Subczynski, M. Pasenkiewicz-Goerula, W. E. Antholine, J. S. Hyde, J. Am. Chem. Soc., 1999,121, 4054. (c) P. J. Alonso, J. I. Martinez, V. M. Orera, Liq. Cryst., 1999, Vol 26, No. 5, 649. (d) F. R. Diaz, N. Valdebenito, Liq. Cryst., 1998, Vol 25, No. 2, 217.
21. R. S. Drago, Physical Methods, 1992, p360.
22. V. Fernadez, M. Moran, M. T. Gutierrez-Rios, C. Foces, F. H. Cano, Inorg. Chim. Acta., 1987, 128, 239.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top