跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳健偉
研究生(外文):Cheng-Wei Wu
論文名稱:過渡金屬氧化物擔持於多壁奈米碳管之丙烷氧化反應研究
論文名稱(外文):Oxidation of Propane over Transition Metallic Oxide Catalysts Supported on Multi-Wall Carbon Nanotubes
指導教授:鄭紀民
指導教授(外文):Jih-Mirn Jehng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:中文
論文頁數:112
中文關鍵詞:奈米碳管丙烷氧化反應
外文關鍵詞:Carbon nanotubesPropane oxidation reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
奈米碳管由於具有較小的質量密度、大的比表面積、獨特的電子、孔洞結構和吸附性等性質,受到研究人員廣泛的注意與應用。由文獻得知,將奈米碳管作為載體於催化反應中,皆有不錯的催化性能。
研究中將奈米碳管作為載體,配合含浸法製備觸媒,進行丙烷氧化反應初步研究。本研究發現對奈米碳管進行表面處理時,能有效除去奈米碳管殘留之觸媒及不定形碳而提高奈米碳管之純度、比表面積、改善奈米碳管孔洞結構、使其表面產生含氧基團以增加親水性。分析擔持釩、鉻、鉬等不同含量金屬氧化物對被擔持金屬氧化物觸媒結構特性之影響,經由表面積與孔洞分佈儀(BET)、熱重量分析儀(TGA) 、X光繞射儀(XRD)及拉曼光譜儀(Raman)之測試結果顯示,被擔持金屬氧化物觸媒孔徑分佈範圍很大;擔持金屬氧化物的奈米碳管熱穩定性降低;金屬氧化物可能是以V2O5、Cr2O3、MoO3之結晶態及其形成之各金屬表面氧化物層同時存在於奈米碳管表面。
以特性分析結果對被擔持金屬氧化物觸媒進行評估,並進行丙烷氧化反應,利用氣相層析儀分析產物濃度。反應結果主產物為丙烯,副產物為一氧化碳、二氧化碳、甲烷、乙烷、乙烯。歸納反應結果,被擔持氧化鉻觸媒對此反應系統有較高的丙烷轉化率及丙烯產率,從丙烯選擇率來看,則以被擔持氧化鉬觸媒表現較佳。隨著反應溫度增加,觸媒轉化率愈高,而高氧氣進料比時丙烷轉化率也會比低氧氣進料比時高。而丙烯選擇率則隨著反應溫度的上升有下降的趨勢,低氧氣進料比的丙烯選擇率則會較高氧氣進料比的高。隨著氧氣進料比越大丙烷容易過度氧化,而副產物一氧化碳、二氧化碳則增多。此外在每一系列之被擔持金屬氧化物觸媒中,丙烷轉化率隨著擔持之金屬氧化物含量增加而上升或至一極大值,可見擔持金屬金屬氧化物含量和催化能力有密切的關係。
在丙烷氧化反應實驗中發現,奈米碳管為載體的觸媒較以活性碳為載體的觸媒結構穩定,熱穩定性也較高,在高溫下進行反應,有較佳的催化性能。

Owing to the properties of lower density, larger specific surface area, unique structure and adsorption, carbon nanotubes (CNTs) has become attractive and extensively applied in many researcher groups. In recent literatures, it has an excellent application in catalysis to use CNTs as a support in different catalytic reactions.
In this study, CNTs are used as a support, and the supported metal oxide catalysts are prepared by impregnation method to perform with the propane oxidation reaction. Upon the surface treatment on CNTs, the original catalysts and the amorphous carbon on CNTs can be removed efficiently and the purity of CNTs can be improved, specific surface area of CNTs and carboxyl groups can be increased and produced to make CNTs more hydrophilic. To analyze the effect of different contents of supported metal (vanadium, molybdenum and chromium) oxide on the CNTs, BET surface area, TGA, XRD and Raman will be used to characterize the structural information of CNTs. From the results, the surface metal oxides may be formed as V2O5, Cr2O3 and MoO3 crystallites, and metal oxide layers on CNTs surface can be coexisted on the CNTs surface.
The concentration of reaction products was detected by GC analysis and determine that the products are propene and by-products, such as CO, CO2, CH4, C2H6 etc. In the catalytic results, the supported chromium oxide catalysts possess a higher conversion and yields among the supported metal oxide catalysts. However, the supported molybdenum oxide catalysts possess a higher selectivity. By increasing temperature, the reaction conversion increases and selectivity goes lower. With the increase of the oxygen feed ratio, the by-products CO and CO2 become increasing. In addition, the propane conversion increases with increasing surface metal oxide concentration in the catalysts and drop off with further increasing the coverage of surface metal oxide. Thus, the catalyst properties are related to the concentrations of metal oxide additive.
In the propane oxidation reaction, the thermal stability of CNTs used as a support is higher than those on active carbon support, and furthermore, it possesses higher catalytic effect at higher temperature condition.

中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅲ
致謝……………………………………………………………………..Ⅳ
目錄……………………………………………………………………..Ⅴ
表目錄…………………………………………………………………..Ⅷ
圖目錄…………………………………………………………………..Ⅸ
第一章 緒論…………………………………………………………...1
1-1 前言………………………………………………………………...1
1-2 研究動機與目的…………………………………………………...1
第二章 文獻回顧……………………………………………………..5
2-1 丙烯現況與產量…………………………………………………...5
2-2 丙烷脫氫和氧化脫氫……………………………………………...5
2-3 被擔持金屬氧化物觸媒之丙烷氧化反應研究探討……………...7
2-4 奈米碳管的材料特性與應用…………………………………….11
2-4-1 奈米碳管的合成…………………………………………..13
2-4-2 奈米碳管的純化…………………………………………..16
2-4-3 奈米碳管在催化反應中的應用…………………………..17
第三章 實驗設備與方法…………………………………………..19
3-1 載體材料………………………………………………………….19
3-2 奈米碳管之純化與表面處理…………………………………….19
3-3 觸媒之製備……………………………………………………….20
3-4 觸媒特性分析…………………………………………………….20
3-5 觸媒特性與反應分析儀器簡介………………………………….21
3-5-1 表面積與孔洞分析儀(BET)……………………………..21
3-5-2 X光繞射儀(XRD Spectrometer)………………………...25
3-5-3 熱重量分析儀(Thermogravimetric analysis,TGA)……..26
3-5-4 傅利葉轉換紅外線光譜儀 (FTIR).…………………….26
3-5-5 拉曼光譜儀(Raman spetoscory)…………………………27
3-5-6 氣相層析儀(Gas Chromatography)……………………...27
3-6 觸媒於丙烷氧化脫氫反應計算方法…………………………….32
3-7 觸媒測試 (丙烷氧化脫氫反應)….…………………………….34
第四章 結果與討論………………………..……………………….37
4-1 奈米碳管純化與表面處理後之特性分析……………………….37
4-2 被擔持金屬氧化物觸媒之特性分析……………………………...47
4-2-1 BET表面積測定分析……………………….……………47
4-2-2 熱重量分析(thermogravimetry analysis, TGA)……………55
4-2-3 X光繞射儀(XRD Spectrometer)之晶相分析…………60
4-2-4 拉曼光譜(Raman Spectrum)分析………………………64
4-3 被擔持金屬氧化物觸媒丙烷氧化反應測試…………………….69
4-3-1 不同金屬氧化物效應之探討……………………………..69
4-3-2 純載體與純金屬氧化物結晶活性測試之探討…………..70
4-3-3 不同金屬氧化物含量對載體觸媒活性影響之探討……..73
4-3-4 丙烷與氧氣進料比(C3H8/O2=1,3,6)對被擔持金屬氧化物觸媒活性影響之探討……………………………………..76
4-3-5 不同金屬氧化物擔持於奈米碳管與活性碳兩種觸媒之比較探討……………………………………………………..96
第五章 結論………………………………………………………...104
5-1結論……………………………………………………………….104
5-2未來研究方向與建議……………………………………………...106
參考文獻……………………………………………………………..108

參考文獻
1.S. Iijima.“Helical microtubules of graphitic carbon.”Nature, 354, 56 (1991)
2.J. M. Planeix, N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. M. Ajayan. “Application of Carbon Nanotubes as Supports in Hetergenrous Cataltsis.” J. Am. Chem. Soc, 116, 7935-7936 (1994)
3.Yu. Zhang, Hong-Bin. Zhang, Guo-Dong. Lin, Ping. Chen, You-Zhu. Yuan, K. R. Tsai. “Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh﹘phosphine catalyst.” Applied Catalysis A: General , 187, 213-224(1999)
4.Hong-Bo. Chen, Jing-Dong. Lin, Yun. Cai, Xin-Ying. Wang, Jun. Yi, Jin. Wang, Guang. Wei, Yin-Zhong. Lin, Dai-Wei. Liao. “Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure.” Appl. Surf. Sci, 180, 328-335(2001)
5.Nell. M. Rodriguez, Myung-Soo. Kim, and R. Terry, K. Baker. “Carbon Nanofibers: A Unique Catalyst Support Medium.” J. Phys. Chem, 98, 13108-13111(1994)
6.J. kong, N. R, Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, et al. “Nanotube molecular wires as chemical sensors.” Socience, 287, 622(2000)
7.Walt A. de Heer, A. Chatelain, and D. Ugarte. “A Carbon Nanotube Field-Emission Electron Source.” Science, 270, 1179(1995)
8.K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, and E. Frackowiak. “Supercapacitors form nanotubes/polypyrrole composites.” Chem. Phys. Lett, 347(1-3), 36(2001)
9.H. Dai, J. H. Hafner, A. G. Rinzer, D. T. Colbert, R. E. Smalley. “Nanotubes as nanoprobes in scanning probe microscopy.” Nature, 345, 56(1995)
10.鄭樵陽, “被擔持金屬氧化觸媒之丙烷氧化反應研究”, 國立中興大學化學工程研究所碩士論文, 2000
11.顏維廷, “金屬矽酸顏觸媒於丙烷氧化反應之運用”, 國立中興大學化學工程研究所碩士論文, 2001
12.黃晁熙, “不同過渡金屬添加於矽酸鹽觸媒之結構與氧化反應研究”, 國立中興大學化學工程研究所碩士論文, 2002
13.http://price.xz.gov.cn/gjsc/070002011101.htm
14.L. M. Welch, L. J. Croce, H. F. Christmann, Hyhrocarb. Process, 57(11), 131(1978)
15.F. Cafani and F. Trifiro, Appl. Catal. A, 88, 115(1992)
16.E. A. MameDov and V. Cortes Corberan, Appl. Catal. A., 1, 127(1995)
17.A. Corma, J. M.Lopez Nieto, N. Paredes, M. Perez, Y. Shen, H. Cao, S. L. Suib, Stud. Surf. Sci. Catal., 72,213(1992)
18.T. Blasco, J. M. Lopez Nieto, “Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts.” Appl Catal, A: General, 157, 117-142(1997)
19.F. C. Meunier, A. Yasmeen, J. R. H. Ross, “Oxidative dehydrogenation of propane over molybdena-containing catalysts.” Catalysis Today, 37, 33-42(1997)
20.A. Khodakov, B. Olthof, A. T. Bell, E. Iglesia, “Structure and catalytic properties of supported Vanadium oxides:support effects on oxidative dehydrogenation reactions.” J. Catal., 181, 205-216(1999)
21.A. Khodakov, J. Yang, S. Su, E. Iglesia, A. Bell, “Structure and Properties of Vanadium Oxide—Zirconia Catalystsfor Propane Oxidative Dehydrogenation.” J. Catal, 177, 343-351(1998)
22.鄭紀民, “分子設計應用於金屬氧化物觸媒之研究”, 國科會計劃報告, 中興大學化工系, 2004
23.T. W. Odom, L. J. Huang, P. Kim, M. C. Lieber, “Atomic structure and electronic properties of single walled carbon nanotebes.” Nature, 391, 62(1998)
24.M. S. Dresselhaus, G. Dresselhans, R. Saito, “Physics of carbon nanotubes.” Carbon, 33, 883-891(1995)
25.S. R. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney, and B. Chen, “Radial deformation of carbon nanotubes by Van-der-Waals forces.” Nature, 364, 514(1993)
26.M. Endo, K. Takeachi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto, “the production and structure of pyrolytic carbon nanotubes.” J. Phys. Chem. Solids, 54, 1841-1848(1993)
27.V. Ivanov, J.B. Nary, Ph. Lambin, A. Lucas, B. X. Zhang, F. X. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt, “The study of carbon nanotubes By catalytic Mothod.” Chem. Phys. Lett, 223, 329-335(1994)
28.C. Journet, “Production of carbon nanotubes.” Appl. Phys.,A 67, 1-9(1998)
29.C. B. Statishkumar, A. Govindaraj, C. N. Rao, “Bundles of aligned carbon nanotubes obtained by the pyrolysis of frrrocene-hydrocarbon mixtures:role of the metal nanoparticles produces in situ.” Phys. Lett., 307. 158-162(1999)
30.D. S. Bethune, C. H. Kiang, M. S. devries, G. Gorman, R. Saroy, J. Vazeguez, and R. B. Beyers, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic- layerwalls.” Nature , 357,365 (1992)
31.S. Iijima, T. Ichihashi, “Singel-shell carbon nanotubes of 1-nm diameter.” Nature, 363, 603 (1993)
32.J. M. Lambert, P. M. Ajayan, P. J. Bernier, M. planeix, V. Brotons, B. Coq, J. Castaing, “Improving conditions towards isolating single-shell carbon nanotubes.” Chem. Pyhs. Let, 226, 264 (1994)
33.S. Subamoney, R. S. Ruoff, D. C. Loremts, R. Malhotra, “Radial single-layer nanotubes.” Nature, 366, 637(1993)
34.S. H. Tsai, F. K. Chiang, T.G. Tsai, H. C. Shih, “Synthesis and characterization of the aligned hydrogenated amorphous carbon nanotubes by electron cyclotron resonance excitation.” Thin solid films, 366, 11-15 (1999)
35.S. L. Sung, S. F. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, H. C. Shin, “Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition.” Appl. Phys. Let, 74, 197 (1999)
36.S. Seraphin, D. Zhou, “Single-walled carbon nanotubes growing radially from YC2 particles.” Appl. Let, 65,1593(1994)
37.W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, S. Xie, “Raman characteri-zation of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor.” Appl. Phys. Let, 70, 2684(1997)
38.W.T. Ebbesen, P. M. Ajayan, H. Hinram, K. T. Anigaki, “Role of SP3 defect structures in graphite and carbon nanotubes.” Nature, 367, 19 (1994)
39.K. Tohji, T. Goto, H. Takahashi, “Purifying single-walled carbon nanotubes.” Nature, 383, 679 (1996)
40.P. M. Ajiayan, T. W. Ebbesen, T. Ichihashi, “Opening carbon nanotubes with oxygen and implications for filling.” Nature, 362, 522 (1993)
41.S. C. Tsang, P. J. F. Harris, M. L. H. Green, “Thinning and opening of carbon nanotubes by oxidation using carbon dioxide.” Nature, 362, 520(1993)
42.S. C. Tsang, Y. K. Chen, P. J. F. Harris, “A sample chemical method of opening and filling carbon nanotubes.” Nature, 372, 159(1993)
43.楊占紅,李新海,李晶,等, “奈米碳管純化技術研究”, 中南工業大學學報, 30, 389 (1999)
44.李新海,楊占紅,陳志國,等,“碳奈米管的提純-重鉻酸鉀氧化法”, 新型碳材料, 14, 32 (1999)
45.H. Ago, T. Kugler, F. Cacialli, “Work functions and surface functional groups of multiwall carbon nanotubes.” J. Phys. Chem. B, 103, 8116(1999)
46.K. B. Shelimov, R. Q. Esenaliev, A. G. Rinzler, “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration.” J. Chem. Phys. Let, 282, 429 (1998)
47.A. baiker, International Chem Eng., 17, 25(1985)
48.S. Brunauer, L. S. Deming, W. S. Deming, E. Teller, J. Amer. Chem. Soc, 62, 1723(1940)
49.C. Daniel Harris, “Infrared spectroscopy in surface chemistry.” 1976
50.O. F. Gorriz, L. E. Cadus, “Supported chromium oxide catalysts using metal carbonxylate complexes: dehydrogenation of propane.” Appl. Catal. A:General, 180, 247-260(1999)
51.J Mougin, T. Le Bihan, G. LucaZeau, “High-pressure study of Cr2O3 obtained by high-temperature oxidation by X-ray diffraction and Raman spectroscopy.” J. Phys. Chem. Solids, 62, 553-563(2001)
52.K. Chen, S. Xie, Alexis T. Bell, E. Iglesia, “Structure and properties of Oxidative dehydrogenation catalysts Based on MoO3/Al2O3.” J. Catal.,198, 232-242(2001)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top