|
Ch2 References
[1] K. Ramanathan, M. A. Contreras, C. L. Perkins. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin film solar cell, Prog. Photovoltaics 11 (2003) 225-230. [2] Markus Gloeckler. NUMERICAL SIMULATIONS OF Cu(In,Ga)Se2 SOLAR CELLS. PhD Thesis, Colorado State University, Fort Collins, Colorado (2005) [3] Terada et al., Thin Solid Films vol.480-481 pp.183-187,(2005) Kong et al., Proceeding of MRS (2005) [4] D. Schmid, M. Ruckh, and H. W. Schock, Sol. Energy Mat. Sol. Cells 41-42, 281(1996) [5] P. D. Paulson, R. W. Birkmire, and W. N. Shafarman. “Optical characterization of CuIn1ÀxGaxSe2 alloy thin films by spectroscopic ellipsometry” JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 2 15 JULY 2003 [6] Miquel A, K. Ramanathan, J. AbuShama. Diode Characteristics in State of the Art ZnO/CdS/CuIn1-xGaxSe2 Solar cells. Prog. Photovolt: Res Appl. 2005; 13:209-216 [7] Richard H. Bube “ Photovoltaic Materials” Imperial College Press (1997). 44 [8] Su-Huai Wei, S. B. Zhang, and Alex Zuger “Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties”, Appl. Phys. Lett., Vol. 72, No. 24, 15 June 1998 [9] D.J. Schroeder, J.L. Herberholz, A.A. Rockett, in: Proceedings of the 11th International Conference on Ternary and Multinary Compounds, 1999, pp. 749–752. [10] Shockley W, Queisser H. Detailed balance limit of efficiency of p-n junction solar cell. Journal of Applied Physics 1961; 32(3): 510-519. [11] T. Nakada and A. Kunioka: Appl. Phys. Lett. Vol.74, No.17(1999)2444-2446 [12] M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartz-lander, F. Hansoon, R. Noufi, Prog. Photovoltaics: Res. Appl. 7(1999) 311 [13] Y. Yan, K.M. Jones, J. Abushama, M. Young, S. Asher,M.M. Al-Jassim, R. Noufi, Appl. Phys. Lett. 81 (2002) 1008–111 [14] D. Schmid, M. Ruckh, F. Grunwald, H.W. Schock, J. Appl. Phys. 73 (1993) 2902–2909. [15] F.S.Hasoon,Y.Yan,H.Althani,K.M.Jones,H.R.Moutinho, J. Alleman, M.M. Al-Jassim, R. Noufi, Thin Solid Films 387 (2001) 1–5.
Ch3 References
[1] Richard H. Bube “ Photovoltaic Materials” Imperial College Press (1997). [2] S.R. Dhariwal*, S. Rajvanshi, “Theory of amorphous silicon solar cell (a): numerical analysis”, Solar Energy Materials & Solar Cells 79 (2003) 199–213 [3] S.R. Dhariwal*, S. Rajvanshi, “Theory of amorphous silicon solar cell (b): a five layer analytical model”, Solar Energy Materials & Solar Cells 79 (2003) 215–233 [4] N. Hernandez-Como, A. Morales-Acevedo, Solar Energy Materials & Solar Cells 94 (2010) 62-67 [5] U. Dutta and P. Chatterjee, “The open circuit voltage in amorphous silicon p-i-n solar cells and its relationship to material, device and dark diode parameters”, JOURNAL OF APPLIED PHYSICS VOLUME 96, NUMBER 415 AUGUST 2004 [6] A.Fantoni rt al., Mathematics and Computers in Simulation 49 (1999) 381-401 [7] T. Brammer, H. Stiebig, J. Appl. Phys., Vol. 94, No. 2, 15 July 2003 [8] H. Takakura*, Y. Hamakawa, “Device simulation and modeling of microcrystalline silicon solar cells”, Solar Energy Materials & Solar Cells 74 (2002) 479–487 [9] Street R, Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge (1991). [10] L. Esaki, “ New phenomenon in narrow germanium p-n junction,” Phys. Rev., vol. 109, no. 2, pp. 603-604, Jan. 1958. [11] Guter W, Bett AW,” I–V CHARACTERIZATION OF TUNNEL DIODES AND MULTIJUNCTION SOLAR CELLS,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 9, SEPTEMBER 2006 [12] Hurkx GAM, Klaassen DBM, Knuvers MPG. A new recombination model for device simulation including tunnelling. IEEE Transactions on Electron Devices 1992; 39: 331–338.
Ch4 Reference
[1] A. Luque, S. Hegedus, “Handbook of Photovoltaic Science and Engineering.” 2003 [2] Hitoshi SAI, Homare FUJII, Koji ARAFUNE, Yoshio OHSHITA. Jpn. J. Appl. Phys., Vol. 46, No. 6A (2007)
|