跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 20:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃乾燿
研究生(外文):Chien-Yao Huang
論文名稱:銅銦鎵硒及堆疊型矽基薄膜太陽能電池模擬
論文名稱(外文):CIGS and Micromorph Solar Cell Simulation
指導教授:劉致為
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:104
中文關鍵詞:銅銦鎵硒堆疊型矽基薄膜太陽能電池薄膜太陽能電池模擬
外文關鍵詞:CIGSMicromorphthin film solar cell simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, the physics of CIGS and micromorph solar cells are investigated by numerical simulation. At first, simulation models are established and compared with experiment results. Then some issues of high efficiency thin film solar cell are discussed.
Among several thin film solar cells, CIGS solar cell has a record efficiency ~20%, but the progress has largely been driven by empirical optimization rather than by in-depth understanding of appropriate physical models. Therefore, some critical issues for achieving high conversion efficiency are discussed including(1) optimum single band gap of CIGS solar cell and the effects of CBO between CdS/CIGS layers; (2) effects of Ga-grading on CIGS solar cell; (3) effects of junction properties on CIGS solar cell. These simulation results give some insights to achieving high cell efficiency.
Micromorph solar cell has a stack tandem structure and consists of an amorphous silicon top cell and a microcrystalline silicon bottom cell. The interconnection between top and bottom cells is via Esaki tunnel diode. The simulated J-V curve has an S-shape and 33.4 A/cm2 maximum tunnel current Jpeak, which is much greater than photo-generated current Jphoto to prevent distorted J-V curve. The optimal thickness of absorber layer is also discussed and indicates the efficiency of micromorph solar cell is sensitive to current matching. Furthermore, the EQE responses of subcells under different voltage bias are studied by simulation. The different behaviors of top and bottom cell are discussed and referred to difference of optical generation distribution. Finally, surface texture is considered into simulation model and optimizes the texture size. The optimal texture size gives a 2% efficiency improvement than planar structure.


Contents
List of Tables………………………………………………………...VIII
List of Figures………………………………………………………....IX

Chapter 1 Introduction………………………………………………...1
1.1 Introduction……………………………………………………………………….1
1.2 Motivation ………………………………………………………………………..2

Chapter 2 CIGS Solar Cell Simulation ………………………………3
2.1 Introduction………………………………………………………………………3
2.2 Conventional CIGS solar cell simulation………………………………………...4
2.2.1 Basic simulation structure and parameters…………………………………4
2.2.2 Simulation results…………………………………………………………..7
2.3 Uniform distribution of Ga content in CIGS solar cell………………………….11
2.3.1 Effect of Ga content on physical properties of CuIn(1-x)Ga(x)Se2 absorber layer………………………………………………………………………..11
2.3.2 Simulation structure and model…………………………………...............17
2.3.3 Simulation result with ideal CdS/CIGS interface recombination (R=0)...........................................................................................................17
2.3.4 Effect of conduction band offset of CdS/CIGS interface…………………19
2.3.5 Simulation result with large CdS/CIGS interface recombination (R=105cm/s)………………………………………………………………..23
2.4 Ga-grading absorber layer in CIGS solar cell…………………………………...25
2.4.1 Ga-grading CIGS absorber layer………………………………………….25
2.4.2 Simulation structure and model…………………………………………...26
2.4.3 Simulation results………………………………………………………….27
2.4.4 Comparison of simulation results………………………………………….31
2.5 Effects of junction properties on CIGS solar cell………………………………..32
2.5.1 Possible junction properties of CIGS solar cell……………………………32
2.5.2 Simulation structure and model……………………………………………34
2.5.3 Simulation results………………………………………………………….36
2.5.4 Comparison of simulation results………………………………………….40
2.6 Summary................................................................................................................42
References....................................................................................................................43

Chapter 3 Micromorph Solar Cell Simulation……………………...45
3.1 Introduction……………………………………………………………………...45
3.2 Material Characteristics of amorphous silicon and microcrystalline silicon……46
3.2.1 Amorphous silicon………………………………………………………….46
3.2.2 Microcrystalline silicon……………………………………………………..50
3.3 Physics of p-i-n solar cell………………………………………………………..53
3.4 Amorphous Si / microcrystalline Si tandem solar cell simulation………………55
3.4.1 Concepts of a-Si/ u-Si tandem solar cell……………………………………55
3.4.2 Basic simulation structure of a-Si/ u-Si tandem solar cell………………….56
3.4.3 Tunnel diode of a-Si/ u-Si tandem solar cell………………………………..58
3.4.4 Basic simulation result of a-Si/ u-Si tandem solar cell……………………..63
3.5 Optimization of absorber layer thickness of micromorph solar cell…………….66
3.6 Summary………………………………………………………………………...71
References...................................................................................................................72



Chapter 4 EQE and texture simulation of micromorph solar cell….74
4.1 Introduction……………………………………………………………………....74
4.2 EQE simulation of micromorph solar cell…………………………………….....75
4.2.1 EQE of tandem solar cell…………………………………………………....75
4.2.2 Simulation model and result………………………………………………...77
4.2.3 EQE of subcells at different voltage bias……………………………………81
4.3 Texture simulation of micromorph solar cell…………………………………….95
4.3.1 Surface texture of micromorph solar cell……………………………………95
4.3.2 Simulation structure and model……………………………………………..96
4.3.3 Simulation results……………………………………………………………97
4.4 Summary………………………………………………………………………..100
Reference……………………………………………………………………………101
Chapter 5 Summary and Future work……………………………..101
5.1 Summary………………………………………………………………………..101
5.2 Future Work………………………………………………………………….....104



Ch2 References

[1] K. Ramanathan, M. A. Contreras, C. L. Perkins. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin film solar cell, Prog. Photovoltaics 11 (2003) 225-230.
[2] Markus Gloeckler. NUMERICAL SIMULATIONS OF Cu(In,Ga)Se2 SOLAR CELLS. PhD Thesis, Colorado State University, Fort Collins, Colorado (2005)
[3] Terada et al., Thin Solid Films vol.480-481 pp.183-187,(2005) Kong et al., Proceeding of MRS (2005)
[4] D. Schmid, M. Ruckh, and H. W. Schock, Sol. Energy Mat. Sol. Cells 41-42, 281(1996)
[5] P. D. Paulson, R. W. Birkmire, and W. N. Shafarman. “Optical characterization of CuIn1ÀxGaxSe2 alloy thin films by spectroscopic ellipsometry” JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 2 15 JULY 2003
[6] Miquel A, K. Ramanathan, J. AbuShama. Diode Characteristics in State of the Art ZnO/CdS/CuIn1-xGaxSe2 Solar cells. Prog. Photovolt: Res Appl. 2005; 13:209-216
[7] Richard H. Bube “ Photovoltaic Materials” Imperial College Press (1997).
44
[8] Su-Huai Wei, S. B. Zhang, and Alex Zuger “Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties”, Appl. Phys. Lett., Vol. 72, No. 24, 15 June 1998
[9] D.J. Schroeder, J.L. Herberholz, A.A. Rockett, in: Proceedings of the 11th International Conference on Ternary and Multinary Compounds, 1999, pp. 749–752.
[10] Shockley W, Queisser H. Detailed balance limit of efficiency of p-n junction solar cell. Journal of Applied Physics 1961; 32(3): 510-519.
[11] T. Nakada and A. Kunioka: Appl. Phys. Lett. Vol.74, No.17(1999)2444-2446
[12] M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartz-lander, F. Hansoon, R. Noufi, Prog. Photovoltaics: Res. Appl. 7(1999) 311
[13] Y. Yan, K.M. Jones, J. Abushama, M. Young, S. Asher,M.M. Al-Jassim, R. Noufi, Appl. Phys. Lett. 81 (2002) 1008–111
[14] D. Schmid, M. Ruckh, F. Grunwald, H.W. Schock, J. Appl. Phys. 73 (1993) 2902–2909.
[15] F.S.Hasoon,Y.Yan,H.Althani,K.M.Jones,H.R.Moutinho, J. Alleman, M.M. Al-Jassim, R. Noufi, Thin Solid Films 387 (2001) 1–5.

Ch3 References

[1] Richard H. Bube “ Photovoltaic Materials” Imperial College Press (1997).
[2] S.R. Dhariwal*, S. Rajvanshi, “Theory of amorphous silicon solar cell (a):
numerical analysis”, Solar Energy Materials & Solar Cells 79 (2003)
199–213
[3] S.R. Dhariwal*, S. Rajvanshi, “Theory of amorphous silicon solar cell (b): a
five layer analytical model”, Solar Energy Materials & Solar Cells 79 (2003)
215–233
[4] N. Hernandez-Como, A. Morales-Acevedo, Solar Energy Materials & Solar Cells 94 (2010) 62-67
[5] U. Dutta and P. Chatterjee, “The open circuit voltage in amorphous silicon
p-i-n solar cells and its relationship to material, device and dark diode
parameters”, JOURNAL OF APPLIED PHYSICS VOLUME 96, NUMBER
415 AUGUST 2004
[6] A.Fantoni rt al., Mathematics and Computers in Simulation 49 (1999) 381-401
[7] T. Brammer, H. Stiebig, J. Appl. Phys., Vol. 94, No. 2, 15 July 2003
[8] H. Takakura*, Y. Hamakawa, “Device simulation and modeling of
microcrystalline silicon solar cells”, Solar Energy Materials & Solar Cells 74
(2002) 479–487
[9] Street R, Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge (1991).
[10] L. Esaki, “ New phenomenon in narrow germanium p-n junction,” Phys. Rev., vol. 109, no. 2, pp. 603-604, Jan. 1958.
[11] Guter W, Bett AW,” I–V CHARACTERIZATION OF TUNNEL DIODES AND MULTIJUNCTION SOLAR CELLS,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 9, SEPTEMBER 2006
[12] Hurkx GAM, Klaassen DBM, Knuvers MPG. A new recombination model for device simulation including tunnelling. IEEE Transactions on Electron Devices 1992; 39: 331–338.

Ch4 Reference

[1] A. Luque, S. Hegedus, “Handbook of Photovoltaic Science and Engineering.” 2003
[2] Hitoshi SAI, Homare FUJII, Koji ARAFUNE, Yoshio OHSHITA. Jpn. J. Appl. Phys., Vol. 46, No. 6A (2007)



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 黃美華,1999,東協六國食品業出口競爭力比較,食品市場資訊,8810期,8-10。
2. 吳昭慧、連大進,2004,毛豆外銷市場的前景與未來,永續農業,21期,11-14。
3. 黃營芳、林文慶,2008,以AHP法分析海生館委外經營模式之關鍵成功因素,工程科技與教育學刊,5卷,2期,200-222。
4. 劉祥熹,1996,從產業觀點論述台灣地區水果出口競爭力與問題對策(下),農業世界,154期,68-71。
5. 鄧振源、曾國雄,1989,層級分析法(AHP)的內涵特性與研究(下)、中國統計學報,27卷,7期,13767-13786。
6. 方怡丹,2006,台灣冷凍毛豆因應日本實施農藥殘留新制採行之措施,農政與農情,169期,取自http://www.coa.gov.tw/。
7. 陳桓敦、鍾政偉、蔡進祥、王維民,2008,桃園地區埤塘永續觀光之發展策略之研究,休閒暨觀光產業研究,3卷,2期,105-122。
8. 張靜貞、許文富,2004,台灣農產品的出口行銷-兼論政府的角色,農業與經濟,32期,1-28。
9. 李孟訓、許雅琪,2008,休閒農場經營績效關鍵成功因素之研究-從平衡計分卡的觀點,農業經濟叢刊,14卷,1期,111-148。
10. 鄧振源、曾國雄,1989,層級分析法(AHP)的內涵特性與研究(上),中國統計學報,27卷,6期,13707-13724。
11. 王敏順、簡貞玲,2008 ,AHP方法應用在國小校園規劃模式之評估,致遠管理學院學報,32期,1-14。
12. 劉祥熹,1996,從產業觀點論述台灣地區水果出口競爭力與問題對策(上),農業世界,153期,66-71。