跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/22 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙安生
研究生(外文):Ann-Shen Zhao
論文名稱:晶片內建抖動訊號量測方法之實現
論文名稱(外文):Built-in Self Test for jitter measurement
指導教授:張順志
指導教授(外文):Soon-Jyh Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:66
中文關鍵詞:抖動內建自我測試量測測試
外文關鍵詞:MeasurementBISTPLLjitterTesting
相關次數:
  • 被引用被引用:1
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  在大多數的系統單晶片(SoC)中會內嵌PLL當作時脈產生器,因其深植於晶片內部,因此很難使用外部的測試機直接測試它。對一個PLL產生的時脈訊號,最難量測的效能之一為訊號抖動(jitter)的量測。
  
  在本論文中,我們首先針對近年來應用於量測訊號抖動的內建自我測試技術進行分析探討,並歸納出各種方法的優點與可能面臨的挑戰。

  其次,我們改良傳統上基於一個理想參考訊號來實現內建自我測試的方法,提出不需要理想參考訊號,僅以一個待測信號為輸入,結合統計分析的技巧,對於量測結果進行校正的測試技術,實驗結果顯示,經由校正所得到的結果有較佳的精確性。

  最後,我們基於前述不需要理想參考訊號的測試方法,提出一個新穎的內建自我測試電路來量測訊號抖動,其包含兩個主要的子電路:抖動放大器與以環型振盪器為基礎的抖動統計電路。抖動放大器主要用來將微小的時間差異線性放大,以提高量測解析度;以環型振盪器為基礎的抖動統計電路用以建立訊號抖動的機率分佈長條圖(Histogram),以便推算訊號抖動的大小。有別於傳統內建自我測試機制皆忽略內建自我測試電路本身也會產生多餘的抖動行為,在我們所提出的內建自我測試技術,利用不同線性放大倍率的技巧,加上簡單的統計分析與數學推估,可以有效的移除內建環型振盪器本身所產生多餘的訊號抖動,以得到更精確的量測結果。本論文所提出內建自我測試電路之主要功能區塊皆以TSMC 0.18 �慆製程進行模擬驗証,實驗結果顯示其可得到不錯的結果。
 Phase-locked loops (PLLs) are often served as clock generators and/or frequency synthesizers in a system on a chip (SoC). Since it is usually built inside the chip deeply, it is hard to test PLL directly by using automatic test equipments (ATEs). For a clock signal generated by a PLL, jitter is one of the specifications which are hardest to be test.

 At the beginning of this thesis, we survey and investigate several built-in self-test (BIST) schemes used for jitter measurement in recent years. We also summarize pros, cons and challenges in practical implementation for these BIST schemes.

 To accomplish the jitter measurement, it often needs a golden (jitter free) reference signal in many conventional BIST methods. However, it is hard to provide such ideal signal. Hence, we propose a BIST method which does not need an ideal reference clock. In this BIST method, we measure jitter and employ statistical analysis techniques to calibrate the measured data to achieve higher accuracy results.

 Besides, we propose a BIST circuit based on the method developed previously. The BIST circuit mainly contains two building blocks: jitter amplifier and ring oscillator based jitter calculating circuit. Jitter amplifier is used to linearly amplify tiny time intervals to enhance the measuring resolution. Ring oscillator based jitter calculating circuit is used to collect the timing data and build the histogram of jitter to estimate the amount of jitter. In contrast to conventional BIST methods, the proposed BIST scheme can remove the extra jitter generated by the built-in ring oscillator itself to obtain more accurate measuring results by using linear jitter amplifier and simple statistical techniques. All main function blocks proposed in this thesis are all verified and simulated with TSMC 0.18 �慆 process.
1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 ORGANIZATION OF THIS THESIS 2
THE REMAINDER OF THE THESIS IS ORGANIZED AS FOLLOWS: 2
2 BASICS FOR JITTER MEASUREMENT 4
2.1 CONCEPTS OF JITTER 4
2.1.1 Jitter and Phase Noise 5
2.1.2 Jitter Measurement 6
2.2 JITTER CLASSIFICATIONS 7
2.2.1 Classified by Properties 7
2.2.2 Classified by Measuring Time 8
2.3 JITTER BEHAVIORS FOR VCO AND PLL 10
2.3.1 Jitter Curves in Ring Oscillator 10
2.3.2 Jitter Curves in PLL 12
2.4 MODELING METHODS 14
2.4.1 Frequency Modulation 14
2.4.2 Periods with Random Jitter 16
3 PLL JITTER TESTING METHODS 18
3.1 ATE AND BIST 18
3.1.1 ATE Testing 19
3.1.1.1 Oscilloscope 19
3.1.1.2 BERT Testing 21
3.1.1.3 Bathtub Curves 21
3.1.2 BIST 23
3.2 CONSIDERATIONS FOR JITTER BIST 23
3.2.1 Decision Flow 23
3.2.2 Should we Combine PLL and BIST? 24
3.2.3 Less Loading Effect 26
3.2.3.1 Using the Accumulating Property 27
3.2.3.2 Self-Measurement 29
3.2.3.3 Other Considerations 33
3.3 SOME TECHNIQUES FOR JITTER BIST 33
3.3.1 Vernier Delay Line 33
3.3.2 Oscillators 35
3.3.3 Short Discussion for TDC 36
3.4 SOME CORRECTION OF CALCULATIONS 37
3.4.1 Questions 37
3.4.2 Assumptions: 39
3.4.3 The Derivation 39
3.4.4 The Result 40
3.4.5 The Example 41
4 DESIGNING A JITTER BIST 45
4.1 THE PROPOSED BIST 45
4.2 BLOCKS 46
4.2.1 Adjustable Delay 46
4.2.2 Edge Detector 47
4.2.3 Time Amplifier 47
4.2.4 The Ring Oscillator 51
4.2.5 Counter 51
4.2.6 Short Discussion for DFF 52
4.2.7 Analysis from the Statistical View 53
5 CONCLUSIONS AND FUTURE WORK 57
5.1 CONCLUSIONS 57
5.2 FUTURE WORK 58
REFERENCE 59
A CALCULATING JITTER WITH CDF 62
A.1 THE BASIC SETTING OF THE MEASUREMENT 62
A.2 THE STANDARD DEVIATION AND RMS VALUE 65
BIOGRAPHY 66
Reference

[1]Nelson Soo, “Jitter Measurement Techniques,” PERICOM Application Brief AB36, Nov. 30, 2000.
[2]M. J. Burbidge, A. Lechner, G. Bell and A.M.D. Richardson, “Motivations towards BIST and DfT fot embedded charge-pump phase-locked loop frequency synthesizers,” IEE Proc. Circuits Devices Syst., pp. 337-348, Aug. 2004.
[3]S. Cherubal and A. Chatterjee, “A high-resolution jitter measurement technique using ADC sampling,” in Proceedings of International Test Conference, pp. 838-847, 2001.
[4]M. A. Kossel and M. L. Schmatz, “Jitter measurements of high-speed serial links,” in Proceedings of Design & Test of Computers, IEEE, pp. 536-543, 2004.
[5]B. G. Goldberg, “Digital frequency synthesis demystified,” LLH Technical Publishing, 1999.
[6]J. A. McNeill, “Jitter in ring oscillators,” Solid-State Circuits, IEEE Journal of Volume 32, Issue 6, pp.870 – 879, June 1997.
[7]R. J. Baker, CMOS Mixed-Signal Circuit Design, IEEE Press, pp.74-77, 2002.
[8]S. Cherubal and A. Chatterjee, “A high-resolution measurement technique using ADC sampling,” in Proceedings of International Test Conference, pp.838-847, 2001.
[9]M. A. Kossel and M. L. Schmatz, “Jitter Measurements of High-Speed Serial Links,” in proceedings of IEEE Design & Test of Computers, pp.536-543, 2004.
[10]S. Sunter and A. Roy, “BIST for phase-locked-loops in digital applications,” in Proceedings of International Test Conference, pp.532-540, 1999.
[11]M. J. Burbidge, F. Poullet, J. Tijou and A. Richardson, “Investigations for minimum invasion digital only built-in “ramp” based test techniques for charge pump PLL’s,” in Proceedings of European Test Workshop, 2002.
[12]J. M. Cazeaux, M. Omana and C. Metra, “Low-area on-chip circuit for jitter measurement in a phase-locked loop,” in Proceedings of the 10th IEEE International On-Line Testing Symposium, 2004.
[13]T. J. Yamaguchi, M. Soma, L. Malarsie, M. Ishida and H. Musha, “Timing jitter measurement of 10 Gbps bit clock signals using frequency division,” in Proceedings of the 20 th IEEE VLSI Test Symposium, 2002.
[14]F. M. Gardner, “Charge-pump phase lock loops,” IEEE Transactions on Communications, pp.1848-1858, 1980.
[15]B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, pp.532-577, 2001.
[16]A. H. Chan and G. W. Roberts, “A jitter characterization system using a component-invariant Vernier delay line,” IEEE Transactions on Very Large Scale Integration Systems, pp.79-95, 2004.
[17]T. Xia, H. Zheng, J. Li, and A. Ginawi, ”Self-refereed on-chip jitter measurement circuit using Vernier oscillators,” in Proceedings of the IEEE Computer Society Annual Symposium on VLSI, 2005.
[18]BISTMaxx: Comprehensive Micro-Instrument and Distributed Test Solutions for Digital, Analog and Mixed-signal ASIC and SoC Design. Fluence Corp., [online] Available: http://www.fluence.com/bistmaxx/bistmaxx_catalog/
BistmaxxCatalog900 .html
[19]M. Solomou, C. Evans and D. Rees, “Crest Factor Minimization in the Frequency Domain,” IEEE Transactions on Instrumentation and Measurement, pp.859-965, 2002
[20]R. D. Yates and D. J. Goodman, Probability and Stochastic Processes a Friendly Introduction for Electrical and Computer Engineers, New York: Wiley
[21]K. Taylor, B. Nelson, A. Chong, H. Nguyen, H. Lin, M. Soma, H. Haggag, J. Huard and J. Braatz, “Experimental results for high-speed jitter measurement technique,” in proceedings of International Test Conference, pp.85-94, 2004.
[22]M. Oulmane and G. W. Roberts, “A CMOS time amplifier for femto-second resolution timing measurement,” in Proceedings of ISCAS, pp.509-512, 2004.
[23]K. Taylor, B. Nelson, A. Chong, H. Nguyen, H. Lin, M. Soma, H. Haggag, J. Huard and J. Braatz, “Experimental results for high-speed jitter measurement technique,” in Proceedings of International Test Conference, pp.85-94, 2004.
[24]J. M. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits a Design Perspective, Eaglewood Cliffs, NJ: Prentice-Hill
[25]I. F. Useethis, T. H. Esis, I. T. Meansthat, U. C. Annotgraduate and W. A. Haahaha, “Built-in Self Test for Jitter Measurement,” in Proceedings of International Test Conference, pp.78-65, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top