跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡長志
研究生(外文):Chang-Chih Tsai
論文名稱:仿生撲翼之二維流場與受力量測
論文名稱(外文):Measurement of 2-D Flow Field and Force for a Biomimetic Flapping Wing
指導教授:朱錦洲
指導教授(外文):Chin-Chou Chu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:78
中文關鍵詞:仿生工程學撲翼量力
外文關鍵詞:flapping wingwake capturerotational liftPTV
相關次數:
  • 被引用被引用:2
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由模型實驗方法來探討仿生懸停撲翼下的簡化二維流場,針對文獻上所敘述的非定常流體力學機制做一番討論,不僅利用PTV技術觀察撲翼拍動所產生的流場,還同時對翼板所受到的力做量測。對於拍動中各項參數的改變做一系列的探討,包括攻角、轉速、拍動時機等,並利用得到的受力變化,配合流場,做觀察比對,希望能找出流場與力產生的關係。轉動時機對整體的升力表現有很大的關係,拍動模式從advanced mode接近symmetrical mode升力的表現很好,尤其對於『wake capture』部分的提供,而delayed mode則相反。上下拍的攻角對整體平均升力的大小的關係有相當的影響,卻沒有拍動模式影響的那麼大,一般而言,在50°∼60°左右,得到的平均升力最大,攻角再更大,升力產生越少。轉動時的角速度對於升力表現略有影響,能提供更多的升力,但對整體升阻比並沒有提升太多。本研究將有助於仿生的非定常流體力學機制以及未來數值模擬成果的比對做更深入的探討。
This research discusses the biological modelling in hovering flights by the model experiment method for two-dimensional simplified flow field, and narrates some mechanisms in non-steady flow in literatures to make discussion. This experiment not only uses the PTV technology to observe the flow field which produces by the wing plate, but also measures the force on the wing plate at the same time. Regarding each parameter change to make a series of discussions, and it is included the angle of attack, the rotational speed, the flap opportunity and so on. Then, to compare the force with flow field finds the relations between the flow field and force.
1. In the result, the timing of rotation has great effect on the lift performance. For three kinematics conditions, advanced and symmetrical rotations produce more lift force than delayed rotation, especially when the wake capture happened.
2. The angle of attack in upstroke and downstroke is also an important parameter in flapping process, and the results indicate the best lift performance at 50°~60° angle of attack.
3. Angular velocity in rotation affects a little bit on lift performance. Faster speed not only provides more lift force, but also supplies more drag force.
This research will help to proof the mechanisms in non-steady flow and to compare with the result of numerical analysis in future.
誌謝....................................................................................................................................i
摘要...................................................................................................................................ii
英文摘要..........................................................................................................................iii
目錄..................................................................................................................................iv
符號說明..........................................................................................................................vi
圖目錄.............................................................................................................................vii
表目錄...............................................................................................................................x

第一章 導論..................................................................................................................1
1.1 前言................................................................................................................1
1.2 文獻回顧........................................................................................................2
1.3 研究目的…………………............................................................................4
1.4 文章架構…………………............................................................................4

第二章 實驗設備與實驗方法......................................................................................6
2.1 實驗設備........................................................................................................6
2.1.1 實驗水槽............................................................................................6
2.1.2 運動模擬系統....................................................................................6
2.1.2.1 單軸滑軌................................................................................6
2.1.2.2 伺服馬達................................................................................6
2.1.3 受力量測系統....................................................................................7
2.1.3.2 防水型六軸力規感應器........................................................7
2.1.3.2 訊號擷取裝置........................................................................7
2.1.4 流場量測系統....................................................................................8
2.1.4.1 雷射........................................................................................8
2.1.4.2 電子耦合攝影機....................................................................8
2.1.4.3 影像擷取卡及軟體................................................................8
2.1.4.4 顯影微粒................................................................................8
2.2 實驗方法........................................................................................................9
2.2.1 運動控制............................................................................................9
2.2.2 實驗步驟............................................................................................9
2.2.3 實驗訊號分析..................................................................................10
2.2.3.1 力規訊號分析......................................................................10
2.2.3.2 流場影像分析......................................................................10


第三章 理論分析......................................................................................................12
3.1 動態比例......................................................................................................12
3.1.1 雷諾數..............................................................................................12
3.1.2 約化頻率特徵常數..........................................................................13
3.2 平均升力係數..............................................................................................13
3.3 平均阻力係數..............................................................................................13

第四章 實驗結果與討論............................................................................................15
4.1 實驗參數..............................................................................................................15
4.2 流場顯影..............................................................................................................15
4.3 受力量測..............................................................................................................17
4.3.1 六軸力規矯正..........................................................................................17
4.3.2 單週期的受力量測..................................................................................18
4.3.2.1 升力係數......................................................................................18
4.3.2.2 阻力係數......................................................................................19
4.3.2.3 上下拍攻角不同對升阻力的影響..............................................19
4.3.2.4 拍動時機不同對升阻力的影響..................................................20
4.3.2.5 轉動速度不同對升阻力的影響..................................................20
4.3.3 多週期的受力量測..................................................................................21
4.3.3.1 轉動時機不同的多週期拍動......................................................21
4.3.3.2 攻角不同的多週期拍動..............................................................22
4.3.3.3 轉速不同的多週期拍動..............................................................22
4.4 討論......................................................................................................................23

第五章 結論與未來展望............................................................................................24
5.1 結論......................................................................................................................24
5.2 未來展望..............................................................................................................25

參考文獻......................................................................................................................26
1.Bennett, L. (1970). Insect flight: lift and the rate of change of incidence. Science 167, 177–179.
2.Bennett, L. (1977). Clap and fling aerodynamics – an experimental evaluation. J. Exp. Biol. 69, 261-272.
3.Birch, J. M. & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412(6848): 729-733.
4.Birch, J. M., Dickson, W. B. & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers J. Exp. Biol., March 1, 207(7): 1063 – 1072.
5.Chang, C. C. (1992). Potential Flow and Forces for Incompressible Viscous Flow. Proc. R. Soc. Lond. A 437: 517-525.
6.Cloupeau, M., Devillers, J. F. & Devezeaux, D. (1979). Direct measurements of instantaneous lift in desert locust: comparison with Jensen’s experiments on detached wings. J. exp. Biol. 80, 1-15.
7.Dickinson, M. H. & Götz, K. G. (1993). Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174, 45–64.
8.Dickinson, M. H. & Götz, K. G. (1996). The wake dynamics and flight forces of the fruit fly Drosophila melanogaster. J. Exp. Biol. 199, 2085-2104.
9.Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960.
10.Dudley, R. (2000). The biomechanics of insect flight: form, function, evolution. Princeton: Princeton University Press.
11.Edwards, R.H. & Cheng, H.K.(1982). J. Fluid Mech, vol.120, pp.463-473.
12.Ellington, C. P. (1984d). The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Phil. Trans. R. Soc. Lond. B 305, 79-113.
13.Ellington, C. P., Van den Berg, C., Willmott, A. P. & Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature 384, 626-630.
14.Ellington, C. P. (1999). The novel aerodynamics of insect flight: applications to micro- air vehicles. J. Exp. Biol. 202, 3439-3448.
15.Fry, S. N., Sayaman, R. & Dickinson, M. H. (2003). The aerodynamics of free-flight maneuvers in Drosophila. Science 300, 495-498
16.Lehmann, F. -O., Sane, S. P. & Dickinson, M.H. (2005). The aerodynamic effects of wing–wing interaction in flapping insect wings.J. Exp. Biol. 208, 3075-3092.
17.Lighthill, M.J. (1973). On Weis-Fogh mechanism of lift generation. J. Fluid Mech. 60, 1-17.
18.Liu, H., Ellington, C. P., Kawachi, K., VandenBerg, C. and Willmott, A.P. (1998). A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 201, 461–477.
19.Maxworthy, T. (1979). Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93, 47-63.
20.Norberg, R. (1975). Hovering flight of the dragonfly, Aeschna juncea L., kinematics and aerodynamics. In Swimming and Flying in Nature, vol. 2 (ed. T. Wu, C. Brokaw and C. Brennen), pp. 763-781. New York: Plenum Press.
21.Ramamurti, R., Sandberg, W.C., Löhner, R., Walker, J.A. & Westneat, M.W. (2002). Fluid Dynamics of Flapping Aquatic Flight in the Bird Wrasse: Three-Dimensional Unsteady Computations with Fin Deformation; J. Exp. Biology 205, 2997-3008.
22.Sane, S. P. & Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production. J. Exp. Biol. 204(15): 2607-2626.
23.Sane, S. P. & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. exp. Biol. 205, 1087-1096.
24.Sane, S. P. (2003). Review - The aerodynamics ofinsect flight, J. Exp. Biol. 206, 4191-4208.
25.Savage, S., Newman, B. & Wong, D. (1979). The role of vortices and unsteady effects during the hovering flight of dragonflies. J. Exp. Biol. 83, 59-77.
26.Smith ,M.A., Plett, K., Johns-Krull, C. M.,. Basri, G. S,. Thompson ,J. R, & Aufdenberg, J. P. (1996). Ap. J., 469, 336–346, “Dynamic Processes in Be Star Atmospheres. IV. Common Attributes of Line Profile ‘Dimples’ ”
27.Spedding, G. R. & Maxworthy, T. (1986). The generation of circulation and lift in a rigid two-dimensional fling. J. Fluid Mech. 165, 247-272.
28.Sun, M. & Tang, J. (2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. exp. Biol. 205, 55-70.
29.Sun, M. & Xin, Y. (2003). Flow around two airfoils performing fling and subsequent translation and translation and subsequent flap. Acta Mechanica Sinica 19, 103-117.
30.Usherwood, J.R. & Ellington C.P. (2002). The aerodynamics of revolving wings - I. Model hawkmoth wings. J. exp. Biol. 205 (11), 1547-1564.
31.Usherwood, J.R. & Ellington C.P. (2002). The aerodynamics of revolving wings - II. Propeller force coefficients from mayfly to quail. J. exp. Biol. 205 (11), 1565-1576.
32.Wang Z J. (2000).Vortex shedding and frequency selection in flapping flight. J. Fluid Mech, 410: 323 - 341.
33.Weis-Fogh, T. & Jensen, M. (1956) Proc.R.Soc.London B, 239-415.
34.Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169-230.
35.Zanker, J. M. & Götz, K.G. (1990). The wing beat of Drosophila melanogaster.II. Dynamics. Phil. Trans. R. Soc. Lond. B 327, 19-44.
36.薛嘉賢(2002),“仿昆蟲拍翅飛行載具之轉翅時機實驗研究”,國立臺灣大學應用力學研究所碩士論文。
37.謝政達(2004),“運用PIV與PTV量測技術於單一渦漩生成之研究”,國立臺灣大學應用力學研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top