1.Bennett, L. (1970). Insect flight: lift and the rate of change of incidence. Science 167, 177–179.
2.Bennett, L. (1977). Clap and fling aerodynamics – an experimental evaluation. J. Exp. Biol. 69, 261-272.
3.Birch, J. M. & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412(6848): 729-733.
4.Birch, J. M., Dickson, W. B. & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers J. Exp. Biol., March 1, 207(7): 1063 – 1072.
5.Chang, C. C. (1992). Potential Flow and Forces for Incompressible Viscous Flow. Proc. R. Soc. Lond. A 437: 517-525.
6.Cloupeau, M., Devillers, J. F. & Devezeaux, D. (1979). Direct measurements of instantaneous lift in desert locust: comparison with Jensen’s experiments on detached wings. J. exp. Biol. 80, 1-15.
7.Dickinson, M. H. & Götz, K. G. (1993). Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174, 45–64.
8.Dickinson, M. H. & Götz, K. G. (1996). The wake dynamics and flight forces of the fruit fly Drosophila melanogaster. J. Exp. Biol. 199, 2085-2104.
9.Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960.
10.Dudley, R. (2000). The biomechanics of insect flight: form, function, evolution. Princeton: Princeton University Press.
11.Edwards, R.H. & Cheng, H.K.(1982). J. Fluid Mech, vol.120, pp.463-473.
12.Ellington, C. P. (1984d). The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Phil. Trans. R. Soc. Lond. B 305, 79-113.
13.Ellington, C. P., Van den Berg, C., Willmott, A. P. & Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature 384, 626-630.
14.Ellington, C. P. (1999). The novel aerodynamics of insect flight: applications to micro- air vehicles. J. Exp. Biol. 202, 3439-3448.
15.Fry, S. N., Sayaman, R. & Dickinson, M. H. (2003). The aerodynamics of free-flight maneuvers in Drosophila. Science 300, 495-498
16.Lehmann, F. -O., Sane, S. P. & Dickinson, M.H. (2005). The aerodynamic effects of wing–wing interaction in flapping insect wings.J. Exp. Biol. 208, 3075-3092.
17.Lighthill, M.J. (1973). On Weis-Fogh mechanism of lift generation. J. Fluid Mech. 60, 1-17.
18.Liu, H., Ellington, C. P., Kawachi, K., VandenBerg, C. and Willmott, A.P. (1998). A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 201, 461–477.
19.Maxworthy, T. (1979). Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93, 47-63.
20.Norberg, R. (1975). Hovering flight of the dragonfly, Aeschna juncea L., kinematics and aerodynamics. In Swimming and Flying in Nature, vol. 2 (ed. T. Wu, C. Brokaw and C. Brennen), pp. 763-781. New York: Plenum Press.
21.Ramamurti, R., Sandberg, W.C., Löhner, R., Walker, J.A. & Westneat, M.W. (2002). Fluid Dynamics of Flapping Aquatic Flight in the Bird Wrasse: Three-Dimensional Unsteady Computations with Fin Deformation; J. Exp. Biology 205, 2997-3008.
22.Sane, S. P. & Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production. J. Exp. Biol. 204(15): 2607-2626.
23.Sane, S. P. & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. exp. Biol. 205, 1087-1096.
24.Sane, S. P. (2003). Review - The aerodynamics ofinsect flight, J. Exp. Biol. 206, 4191-4208.
25.Savage, S., Newman, B. & Wong, D. (1979). The role of vortices and unsteady effects during the hovering flight of dragonflies. J. Exp. Biol. 83, 59-77.
26.Smith ,M.A., Plett, K., Johns-Krull, C. M.,. Basri, G. S,. Thompson ,J. R, & Aufdenberg, J. P. (1996). Ap. J., 469, 336–346, “Dynamic Processes in Be Star Atmospheres. IV. Common Attributes of Line Profile ‘Dimples’ ”
27.Spedding, G. R. & Maxworthy, T. (1986). The generation of circulation and lift in a rigid two-dimensional fling. J. Fluid Mech. 165, 247-272.
28.Sun, M. & Tang, J. (2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. exp. Biol. 205, 55-70.
29.Sun, M. & Xin, Y. (2003). Flow around two airfoils performing fling and subsequent translation and translation and subsequent flap. Acta Mechanica Sinica 19, 103-117.
30.Usherwood, J.R. & Ellington C.P. (2002). The aerodynamics of revolving wings - I. Model hawkmoth wings. J. exp. Biol. 205 (11), 1547-1564.
31.Usherwood, J.R. & Ellington C.P. (2002). The aerodynamics of revolving wings - II. Propeller force coefficients from mayfly to quail. J. exp. Biol. 205 (11), 1565-1576.
32.Wang Z J. (2000).Vortex shedding and frequency selection in flapping flight. J. Fluid Mech, 410: 323 - 341.
33.Weis-Fogh, T. & Jensen, M. (1956) Proc.R.Soc.London B, 239-415.
34.Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169-230.
35.Zanker, J. M. & Götz, K.G. (1990). The wing beat of Drosophila melanogaster.II. Dynamics. Phil. Trans. R. Soc. Lond. B 327, 19-44.
36.薛嘉賢(2002),“仿昆蟲拍翅飛行載具之轉翅時機實驗研究”,國立臺灣大學應用力學研究所碩士論文。37.謝政達(2004),“運用PIV與PTV量測技術於單一渦漩生成之研究”,國立臺灣大學應用力學研究所碩士論文。