跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.60) 您好!臺灣時間:2025/12/01 08:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃弘任
研究生(外文):Hong-jen Huang
論文名稱:應用於電動車併網概念下之雙向電能轉換器電路設計
論文名稱(外文):Design of Bi-directional Power Converter Circuit under Electric Vehicle to Grid Concepts
指導教授:白富升
指導教授(外文):Fu-Sheng Pai
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:132
中文關鍵詞:鋰電池充電策略超電容電動車併網
外文關鍵詞:Super-capacitorLi-ion Battery Charging StrategiesV2G
相關次數:
  • 被引用被引用:0
  • 點閱點閱:973
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:2
受惠於先進讀表基礎建設未來將在智慧型電網中施行,本論文結合智慧電網之電力資訊統合功能,研究一超電容輔助之智慧型電池充電系統,使得電動車輛之充電時間減少,充電效能提高,同時在必要時亦可成為智慧電網電能控管之一環,利用電池之儲能對電力線釋能。基於上述,本論文首先研究超電容輔助之快速充電策略。本文提出以超電容之大容量特性,快速暫存能量,故得節省電動車電池充電時間。本文同時設計一雙向電力轉換器,使得所提系統在必要時可接受來自遠端調度者之需量反應命令,促使電池得即時配合負載管理策略,進行釋放能量到電力線上之作業。為評估掌握本文所提方法的可行性,本文已發展雛形電路,再經由實際電路測試予以驗證理論分析結果。相關研究心得與經驗應可提供電力從業人員進行相關策略研究時之施行及參考。
Nowadays electric utilizes globally are heavily investing to upgrade their antiquated delivery, pricing, and service networks including investments in the advanced metering infrastructure which usually includes direct control and monitoring of devices and appliances inside customer premises. Therefore this thesis is aimed to develop a smart charger of electric vehicle with power converters and super-capacitor enhancement, hence anticipating reaching the rapid battery-charging speed and the bidirectional line interactive for further smart grid. The method proposed in this thesis is examined under various scenarios. The results will help consolidate the feasibility and practicability of the approach for the applications considered.
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XIV
第一章 緒論
1-1研究背景與動機
1-2目的與方法
1-3內容大綱
第二章 電動車併網理論分析
2-1簡介
2-2超電容特性
2-3電池充電策略
2-4雙向電能轉換器系統架構與動作流程分析
2-4-1雙向電能轉換器系統架構
2-4-2應用於電動車併網之動作流程分析
2-5雙向直直流電力轉換器設計規劃與理論推導
2-6市電並聯型換流器設計分析
第三章 系統硬體規劃設計
3-1簡介
3-2微處理器應用
3-3市電並聯型換流器控制電路設計
3-3-1市電並聯型換流器控制外迴路設計
3-3-2市電並聯型換流器控制內迴路設計
3-4蓄電池組雙向直直流轉換器控制電路設計
3-4-1降壓儲能模式控制設計
3-4-2升壓釋能模式控制設計
3-5超電容模組雙向直直流轉換器控制電路設計
3-5-1降壓儲能模式控制設計
3-5-2升壓釋能模式控制設計
3-6主電力架構
3-6-1換流器電路
3-6-2低通濾波器
3-6-3雙向直直流轉換器
3-7功率晶體驅動電路
3-7-1正弦脈波寬度調變
3-7-2非對稱脈波寬度調變
3-7-3光耦合隔離驅動電路
3-8保護電路
3-8-1過電壓保護
3-8-2過電流保護
第四章 系統模擬與實測結果
4-1簡介
4-2市電並聯型換流器模擬及實測結果
4-3雙向直直流轉換器模擬及實測結果
4-3-1降壓儲能模式
4-3-2升壓釋能模式
4-4整體雙向電能轉換器系統模擬及實測結果
4-5整體系統電路實體圖
第五章 結論與未來研究方向
5-1 結論
5-2 未來研究方向
參考文獻
[1]溫賀 譯,智慧型能源系統核心技術,晶靈國際股份有限公司,2011年。
[2]溫榮弘 譯,智慧型能源 : 太陽能、風力發電、智慧型電網的綠經濟能源,晶靈國際股份有限公司,2010年。
[3]P. B. Evans, S. Kuloor, and B. Kroposki, “Impacts of plug-in vehicles and distributed storage on electric power delivery networks,”IEEE Vehicle Power and Propulsion Conference, pp. 838 - 846, 2009.
[4]S. Käbisch, A. Schmitt, M. Winter, and J. Heuer, “Interconnections and Communications of Electric Vehicles and Smart Grids,”the first IEEE International Conference on Smart Grid Communications, pp. 161-166, 2010.
[5]J. Lin, “Issues and challenges in smart-grid market operation and simulation,” IEEE Power and Energy Society General Meeting, pp. 1-4, Feb. 2011.
[6]V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G.P. Hancke, “Smart Grid Technologies: Communication Technologies and Standards,” IEEE Transactions on Industrial Informatics, Vol. 7, No. 4, pp. 529-539, Nov. 2011.
[7]K. Moslehi and R. Kumar, “A Reliability Perspective of the Smart Grid,” IEEE Transactions on Smart Grid, Vol. 1, No. 1, pp. 57-64, Jun. 2010.
[8]R. Burba, and C. Wietfeld, “Multimedia over 802.15.4 and ZigBee Networks for Ambient Environment Control,” IEEE Vehicular Technology Conference, Dublin, Ireland, pp. 179-183, Apr. 2007.
[9]I. Han, H. S. Park, Y. K. Jeong, and K. R. Park, “An Integrated Home Server for Communication, Broadcast Reception and Home Automation,” IEEE Transactions on Consumer Electronics, Vol. 52, No. 1, pp. 104-109, Feb. 2006.
[10]C. Suh, and Y. B. Ko, “Design and Implementation of Intelligent Home Control Systems Based on Active Sensor Networks,” IEEE Transactions on Consumer Electronics, Vol. 54, No. 3, pp. 1177-1184, Aug. 2008.
[11]C. H. Lien, Y. W. Bai, and M. B. Lin, “Remote-Controllable Power Outlet System for Home Power Management,” IEEE Transactions on Consumer Electronics, Vol. 52, No. 4, pp. 1634-1641, Nov. 2007.
[12]D. Niyato, E. Hossain, and A. Fallahi, “Sleep and Wakeup Strategies in Solar-Powered Wireless Sensor/Mesh Networks: Performance Analysis and Optimization,” IEEE Transactions on Mobile Computing, Vol. 6, No. 2, pp. 221-236, Feb. 2007.
[13]HITACHI GLOBAL website: http://www.hitachi.com
[14]經濟部,智慧電動車發展策略與行動方案,2010年4月。
[15]黃雅琪,連結智慧電網與電動車的橋樑─Vehicle to Grid技術市場初探,工業技術研究院,民國100年4月。
[16] Z Noworolski, and E. Praetzel, “A Microcomputer-based Battery Management System,” 13th International Telecommunications Energy Conference, pp. 177-180, Nov. 1991.
[17] J. Garche, “Battery Management System (BMS) for Increasing Battery Life Time,” the 3rd International Conference on Telecommunications Energy Special, pp. 81-88, May 2000.
[18] J. Chatzakis, K. Kalaitzakis, N. C. Voulgaris, and S. N. Manias, "Designing a New Generalized Battery Management System," IEEE Transactions on Industrial Electronics, Vol. 50, No. 5, pp. 990-999, Oct. 2003.
[19] W. Kempton, and S. Letendre, “Electric Vehicles as a New Source of Power for Electric Utilities,” Transportation Research, pp. 157-175, 1997.
[20] R.C. Green, W. Lingfeng, and M. Alam, “The impact of plug-in hybrid electric vehicles on distribution networks: a review and outlook,” IEEE Power and Energy Society General Meeting, pp. 1-8, 2010.
[21] Z. Wang, and X. Sun, “The impact of plug-in hybrid electric vehicles on distribution networks: a review and outlook,” International Conference on Information Science and Technology (ICIST), pp. 843-846, Mar. 2011.
[22] B. Kramer, S. Chakraborty, and B. Kroposki, “A Review of Plug-in Vehicles and Vehicle –to-Grid Capability,” IEEE IECON, Orlando, USA, pp.2278-2283, Nov. 2008.
[23] C. Guille and G. Gross, “Design of a Conceptual Framework for the V2G Implementation,” IEEE Energy 2030 Conference, GA. USA, pp. 1-3, Nov. 2008.
[24] W. Kepmpton and J. Tomic, “Vehicle-to-Grid Power Fundamentals: Calculating Capacity and Net Revenue,” Journal of Power Sources, Vol. 144, No. 1, pp. 268-279, Jun. 2005.
[25] A. De Los Rios, J. Goentzel, K. E. Nordstrom, and C. W. Siegert, “Economic analysis of vehicle-to-grid (V2G)-enabled fleets participating in the regulation service market,” IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1-8, 2012.
[26] J. Lassila, J. Haakana, V. Tikka, and J. Partanen, “Methodology to Analyze the Economic Effects of Electric Cars as Energy Storages,” IEEE Transactions on Smart Grid, Vol. 3, No. 1, pp. 506-516, Mar. 2012.
[27] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Design considerations for a universal input battery charger circuit for PHEV applications,” IEEE International Symposium on Industrial Electronics (ISIE), pp. 3405-3412, 2010.
[28] B. Bilgin, E. Dal Santo, and M. Krishnamurthy, “Universal input battery charger circuit for PHEV applications with simplified controller,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 815-820, 2011.
[29] M.C. Kisacikoglu, B. Ozpineci, and L.M. Tolbert, “Examination of a PHEV bidirectional charger system for V2G reactive power compensation,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 458-465, 2010.
[30] M.C. Kisacikoglu, B. Ozpineci, L.M. Tolbert, and F. Wang, “Single-phase inverter design for V2G reactive power compensation,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 808-814, 2011.
[31] 杜芳儀,以中孔洞碳材為基礎之複合電極材料於超級電容器的性能分析,國立成功大學化學研究所碩士論文,民國98年。
[32] C. B. Zhu, R.G. Lu, L. W. Song, G. L. Wu, and Q. Wang, “An Equivalent Circuit Model for Tractive Super-Capacitor,” IEEE Vehicle Power and Propulsion Conference, pp. 567-573, 2007.
[33] N. Jinrui, W. Zhifu, and R. Qinglian, “Simulation and Analysis of Performance of a Pure Electric Vehicle with a Super-Capacitor,” IEEE Vehicle Power and Propulsion Conference, pp. 1-6, 2006.
[34] R. Kotz, and M. Carlen, Electrochim, Acta 45, pp. 2483, 2000.
[35] S. Li, C. Zhang, and S. Xie, “Research on Fast Charge Method for Lead-Acid Electric Vehicle Batteries,” International Workshop on Intelligent Systems and Applications, pp. 1-5, 2009.
[36] Y. F. Luo, Y. H. Liu, and S. C. Wang, “Search for an optimal multistage charging pattern for lithium-ion batteries using the Taguchi approach,” IEEE Region 10 Conference TENCON 2009 – 2009, pp. 1-5, 2009.
[37] 梁適安,交換式電源供給器之理論與實務設計,全華科技,2001年。
[38] 王順忠 譯,電力電子學,東華書局,民國87年。
[39] 江炫樟,電力電子學,全華科技,2002年。
[40] 曾百由,數位訊號控制器原理與應用-MPLAB C30 開發實務,宏友圖書,民國98年。
[41] dsPIC30F4011 Data Sheet, dsPIC30F Motor Control 16-bit Digital Signal Controller, Microchip Technology Inc., 2009.
[42] 8-Bit D/A Converter DAC0808 Data Sheet, National Semiconductor, Jan. 1995.
[43] Standard Power MOSFET IRFP-264 Data Sheet, IXYS Inc., 2000.
[44] Photo-Coupler TLP-250 Data Sheet, TOSHIBA Corporation, 1996.

[45] Quad Differential Comparators LM339 Data Sheet, Texas Instruments Incorporated, May 2000.
[46] CD4013BM/CD4013BC Dual D Type Flip-Flop Data Sheet, National Semiconductor Corporation, Feb. 1988.
[47] 鄭培璿,IsSpice在電力電子與能源轉換器上的應用,全華科技,民國88年。
[48] NI USB-6215 Data Sheet, National Instruments, Apr. 2009.
[49] JFET-Input Operational Amplifiers TL-084 Data Sheet, Texas Instruments Inc., Feb. 1999.
[50] 李宗勳,整合諧波補償功能之不斷電系統研製,國立成功大學電機工程學系碩士論文,民國93年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top