|
A.Feature point based materials [1]N. Dalal and B. Triggs., Histograms of oriented gradients for human detection, Computer Vision and Pattern Recognition, 2005. Computer Society Conference on IEEE, 2005, pp. 886-893. [2]Lowe, David G., Distinctive image features from scale-invariant key points, International Journal of Computer Vision 60.2 (2004), pp. 91-110. [3]Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B., Learning realistic human actions from movies, Computer Vision and Pattern Recognition, 2008. Computer Society Conference on IEEE, 2008, pp. 1-8. [4]C. Harris and M. Stephens, A combined corner and edge detector, In Proc. of the 4th Alvey Vision Conference, 1988, pp. 147–151. [5]B. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, In Proc. Seventh International Joint Conference on Artificial Intelligence, 1981, pages 674–679. [6]J. Weickert, A. Bruhn, and C. Schnorr, Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods, International Journal of Computer Vision 61.3 (2005), pp. 211-231. [7]T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping, In Proc. European Conference on Computer Vision (ECCV), 2004, pp. 25-36. [8]N. Dalal, B. Triggs, and C. Schmid, Human detection using oriented histograms of flow and appearance, In Proc. European Conference on Computer Vision (ECCV), 2006, pp. 428-441. [9]L. Fei-Fei and P. Perona, A Bayesian hierarchical model for learning natural scene categories, Computer Vision and Pattern Recognition, 2005. Computer Society Conference on IEEE, 2005, pp. 524-531. [10]E. Nowak, F. Jurie, and B. Triggs, Sampling strategies for bag-of-features image classification, In Proc. European Conference on Computer Vision (ECCV), 2006, pp. 409-503. [11]Wang, H., Klaser, A., Schmid, C., Liu, C.L., Dense trajectories and motion boundary descriptors for action recognition, International Journal of Computer Vision 103.1 (2013), pp. 60-79. [12]Bishop, C.M., Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA ,2006 [13]X. Peng, L.Wang, X.Wang, and Y. Qiao, Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice, CoRR, abs/1405.4506, 2014. [14]Jaakkola, T., Haussler, D., Exploiting generative models in discriminative classifiers, In Proc. of Neural Information Processing System (NIPS), 1998, pp. 487-493. [15]Perronnin, F., S´anchez, J., Mensink, T., Improving the fisher kernel for large-scale image classification, In Proc. European Conference on Computer Vision (ECCV), 2010, pp. 143-156. [16]A tutorial on Principal Components Analysis http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf [17]Cortes, C. and Vapnik, V., Support vector networks, Machine Learning, 20.3, 1995, pp. 273-297. B.Neural network based materials [18]Neural Network (Basic Ideas) http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%20(v4).pdf [19]Backpropagation http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%20backprop.pdf [20]Tips for Training Deep Neural Network http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Deep%20More%20(v2).pdf [21]Neural Network with Memory http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/RNN%20(v4).pdf [22]Training Recurrent Neural Network http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/RNN%20training%20(v6).pdf [23]Donahue, Jeff, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell., Long-term recurrent convolutional networks for visual recognition and description, Computer Vision and Pattern Recognition, 2015. Computer Society Conference on IEEE, 2015, pp. 2625-2634. [24]Performing Convolution Operations https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html [25]Chang-Di Huang, Chien-Yao Wang, Jia-Ching Wang, Human Action Recognition System for Elderly and Children Care Using Three Stream ConvNet, Orange Technologies on IEEE International Conference, 2015, pp. 5-9. [26]A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, In Proc. of Neural Information Processing System (NIPS), 2012, pp. 1106-1114. [27]M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, CoRR, abs/1311.2901, 2013. [28]S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1999. [29]S. Ji, W. Xu, M. Yang, and K. Yu, 3D convolutional neural networks for human action recognition, Pattern Analysis and Machine Intelligence on IEEE Transactions on 35, 2013, pp. 221-231. [30]D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, Learning Spatiotemporal Features with 3D Convolutional Networks, Computer Vision, 2015. ICCV, 2015. IEEE International Conference, 2015, pp. 4489-4497. [31]A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, Large-scale video classification with convolutional neural networks, Computer Vision and Pattern Recognition, 2014. Computer Society Conference on IEEE, 2014, pp. 1725-1732. [32]K. Simonyan and A. Zisserman, Two-stream convolutional networks for action recognition in videos, In Proc. of Neural Information Processing System (NIPS), 2014, pp. 568-576. [33]H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, HMDB: A large video database for human motion recognition. Computer Vision, 2011. ICCV, 2011. IEEE International Conference, 2011, pp. 2556-2563.
|