跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏融
研究生(外文):Po-Jung Huang
論文名稱:以離子導電高分子金屬複合物製備低致動電壓可形變面鏡
論文名稱(外文):Making low actuation-voltage deformable mirror by ionic polymer metallic composite
指導教授:蘇國棟
指導教授(外文):Guo-Dung Su
口試委員:蔡永傑吳忠幟
口試日期:2014-12-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:離子性高分子金屬複合材料六角形電極可形變面鏡低致動電壓
外文關鍵詞:IPMCdeformable mirrorshexagonal electrodeslow driving voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們在離子性高分子金屬複合材料上製作六角形電極,並應用於可形變面鏡。我們可藉由在六角形電極上通電與否來控制薄膜的曲率。
在我們的製程中包括了離子交換、曝光顯影和無電電鍍。利用正光阻作為遮罩,我們可以使用無電電鍍在薄膜的其中一面鍍上六角形電極的陣列,薄膜的另一面則完全被金屬所覆蓋。經過量測,六角形陣列的表面電阻大約為5 Ω,確保了低致動電壓的可行性。此外,經過表面的處理後,我們可以利用薄膜的另一面作為光的反射面。我們使用ANSYS Workbench模擬薄膜表面的形變狀況。我們成功地在低於5伏特的致動電壓下成功驅動薄膜,並且達到26 um的最大中心點形變量。另外,此裝置的反應時間大約為5.899秒。此外其共振頻率大約是145Hz。在實驗的最後,我們在實驗中控制可形變面鏡,使其產生三種形變,因此以離子性高分子金屬複合材料製作可形變面鏡是可行的。


In this paper, the fabrication of IPMC (Ionic Polymer Metal Composites) films with hexagonal electrodes for deformable mirrors in adaptive optics has been described. With the array of hexagonal electrodes on one side of IPMC membrane, we can control the contour of IPMC by selectively applying voltage. Our fabrication process involves ion-exchange, lithography and electroless plating steps. A positive photoresist in photolithography is used as the mask in the electroless plating process to selectively grow platinum electrodes in IPMC. The surface resistance of the hexagonal electrodes is about 5 ohms, which is small enough to enable the IPMC to be actuated by voltage lower than 4 volts. The other side of the IPMC membrane is smoothened and can be used as reflection surface. We also used modeling software, ANSYS Workbench, to simulate the deformation behavior of the membrane. We have achieved deformation on our IPMCs (2.5 cm in diameter) under a low actuation voltage less than 4 volts successfully. The maximum stroke of the IPMC deformable mirror is about 26 microns. Our IPMC spent showed the resonant frequency of approximately 145 Hz, which is suitable for retinal imaging application. Due to the low driving voltage of IPMCs, the deformable mirrors made of IPMCs is promising.

致謝 i
CONTENTS ii
LIST OF FIGURES iv
LIST OF TABLES vi
中文摘要 vii
ABSTRACT viii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Ionic polymer metallic composite 3
1.3 Deformable mirror 8
1.4 Liquid deformable mirror 10
1.5 MEMS deformable mirror 13
1.6 Bimorph deformable mirror 17
1.7 Design concept 19
Chapter 2 Fabrication 22
2.1 Fabrication 22
2.2 Conventional IPMC fabrication process 24
2.3 Surface improved patterned IPMC deformable mirror 35
Chapter 3 Simulation Results 37
3.1 ANSYS Workbench simulation 37
Chapter 4 Experiment Results 41
4.1 Surface roughness 41
4.2 Surface resistance 43
4.3 Max center displacement 46
4.4 Response time 52
4.5 Wave front active control 56
Chapter 5 Conclusions 59
5.1 Conclusions 59
Reference 61


[1]Bastaits R, Alaluf D, Belloni E, Rodrigues G, and Preumont 2014 A Segmented bimorph mirrors for adaptive optics: morphing strategy Appl. Opt. 53 4825-4832
[2]Berge B 2005 Liquid lens technology: Principle of electrowetting based lenses and applications to imaging Proceedings of IEEE Int. Conf. MEMS 227-230
[3]Love G D 1997 Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator Appl. Opt. 36 1517-1520
[4]Radzewicz C, Wasylczyk P, Wasilewski W and Krasiski J S 2004 Piezo-driven deformable mirror for femtosecond pulse shaping Opt. Lett. 29 177–9.
[5]Wnuk P, Radzewicz C and Krasi’nski J S 2005 Bimorph piezo deformable mirror for femtosecond pulse shaping Opt. Express 13 4154–9
[6]Horsley D A, Park H, Laut S P and Werner J S 2007 Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry Sensor. Actuat. A-Phys. 134 221-230
[7]Lin P Y, Hsieh H T and Su G D J 2011 Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control J. Opt. 13 055404
[8]Dagel D, Cowan W, Spahn O, Grossetete G, Grime A, Shaw M, Resnick P and Jokiel B 2006 Large stroke MEMs deformable mirror for adaptive optics J. Microelectromech. Syst. 15 572–83
[9]Diouf A, Bifano T, Legendre A, Lu Y and Stuart J 2010 Open loop control of a large stroke MEMs deformable mirror Proc. SPIE 7595 75950D–1
[10]www.okotech.com
[11]Chen Z and Tan X 2010 Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation Sensor. Actuat. A-Phys. 157 246-257.
[12]Kim S J, Lee I T and Kim Y H 2007 Performance enhancement of IPMC actuator by plasma surface treatment Smart Mater. Struct. 16 N6
[13]Ealey M A and Washeba J F 1990 Continuous facesheet low voltage deformable mirrors Opt. Eng. 29 1191-1198
[14]Chen T, Chiu C and Su G J 2008 A large-strokeMEMS deformable mirror fabricated by low-stress fluoropolymer membrane IEEE Photon. Technol. Lett. 20 830–2
[15]Ventsel E, and Krauthammer T 2001 Thin plates and shells: theory: analysis, and applications. CRC press.
[16]http://researchgroups.msu.edu/sml/projects/electroactive-polymers-artificial-muscles- and-sensors-systems-perspective-nsf-eccs-msu-
[17]http://gk12.poly.edu/amps-cbri/html/community/karl.html#
[18]Huang Y H, Lin Y H and Su G D J 2012 Thin zoom camera module by large-stroke micromachined deformable mirrors Proc. SPIE 84880E
[19]http://www.photonics.com/Article.aspx?AID=26045
[20]http://www.ctio.noao.edu/~atokovin/tutorial/part2/dm.html
[21]http://en.wikipedia.org/wiki/Deformable_mirror
[22]Friese C and Zappe H 2008 Deformable polymer adaptive optical mirrors J. Microelectromech. Syst. 17 11–9
[23]Fujiwara N, Asaka K, Nishimura Y, Oguro K and Torikai E 2000 Preparation of gold-solid polymer electrolyte composites as electric stimuli-responsive materials Chem. Mater. 12 1750-1754
[24]Loktev M Y and Belopukhov V N 2000 Wave front control systems based on modal liquid crystal lenses Rev. Sci. Instrum. 71 3290–7
[25]Tournois P 1997 Opt. Commun. 140 245
[26]Hacker M, Stobrawa G, Sauerbrey R, Buckup T, Motzkus M, Wildenhain M and Gehner A 2003 Micromirror SLM for femtosecond pulse shaping in the ultraviolet Appl. Phys. B 76 711–4
[27]Lin Y C, Yu C Y, Li C M, Liu C H, Chen J P, Chu T H and Su G D J 2014 An Ionic-Polymer-Metallic Composite Actuator for Reconfigurable Antennas in Mobile Devices Sensors 14 834-847
[28]Ross A, Graham S, Gundlach A, Stevenson J, HossackW, Vass D, Bodammer G, Smith E and Ward K 2000 Microfabrication and packaging of deformable mirror devices Proc. SPIE 4075 41–8
[29]Bean K 1978 Anisotropic etching of silicon IEEE Trans. Electron Devices 25 1185–93
[30]Maier-Schneider D, Maibach J and Obermeier E 1995 New analytical solution for the load-deflection of square membranes J. Microelectromech. Syst. 4 238–41
[31]Nowell M M and Field D P 1998 Mater. Res. Soc. Symp. Proc. 516 115
[32]Hwang S-J, Lee J-H, Jeong C-O and Joo Y-C 2007 Effect of film thickness and annealing temperature on hillock distributions in pure Al films Scr. Mater. 56 17–20


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top