跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王宗良
研究生(外文):Tzong-Liang Wang
論文名稱:矽/矽鍺多重量子井紅外光檢測器之研究
論文名稱(外文):Study of Si/SiGe Multiple Quantum Well(MQW) Infrared Photodetector
指導教授:黃俊達黃俊達引用關係
指導教授(外文):Jun-Dar Hwang
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:46
中文關鍵詞:多重量子井矽鍺蒸鍍光檢測器太陽能電池
外文關鍵詞:MQWSiGephotodetectorevaporationsolar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出P+-Si/MQW-(SiGe/Si)/i-SiGe/N+-Si光吸收-累崩分離結構的二極體光檢測器,SiGe/Si的量子井結構是以超高真空化學氣相沉積系統所成長。此樣品的PL峰值波長約為1200nm與1500nm顯示分別為Si與SiGe。
目前尚未有光吸收-累崩分離結構的SiGe元件提出。本論文提出了P+-Si/MQW-(SiGe/Si)/i-SiGe/N+-Si光吸收-累崩分離結構的二極體光檢測器,期望光檢測器在照光後能由i-SiGe層吸光,進而產生電子-電洞對,由於光檢測器的工作原理是工作於逆偏之下,P+接負、N+正,因此產生的電子會被直接拉到N+區,而電洞則會經過MQW結構再到達P+區,其目的是利用MQW的ΔEV>ΔEc,期望電洞經過MQW時,可藉由較高的ΔEV獲得較高的動量,進而撞擊出更多的電子電洞對來達到較高的增益。
實驗結果顯示本結構在約-2V左右有明顯的光增益,證實此結構確實有效。
本實驗採用不同的鋁電極圖形,在偏壓為-1V時,點電極的光暗電流比為15.19倍,網狀電極的光暗電流比為52.6倍;點電極加鍍薄膜的光暗電流比為17.9倍,網電極加鍍薄膜的光暗電流比為134倍,結果顯示網狀電極較點狀電極佳;有鍍金屬薄膜又較沒鍍金屬薄膜的佳。
此外,我們在IV量測的過程中,發現到此結構在照光後有太陽能的IV特性,點電極有鍍膜的轉換效率已達8.26%
The SiGe based separate-absorption-multiplication avalanche-photodiode(SAMAPD)and has been implemented for the first time. The structure of SAMAPD, in our work, is P +-Si/MQW-(SiGe/Si)/ i-SiGe/N+-Si, in which the i-SiGe and quantum well structure of SiGe/Si are deposited by ultra-high-vacuum chemical-vapor-deposition (UHVCVD) system. In this structure,the thickness of i-Si0.8Ge0.2 layer is about 150nm and quantum structure is of Si (25 nm)/Si0.8Ge0.2( 5 nm) with five periods.
Experiment results shows that the current increases sharply at about 2 V reverse bias, we speculates that the avalanche effect occurred at this voltage. Two structures of dot and net are processed in our studies. We found that the photo-to-dark current ratio of Iphoto/Idark was 15.19 without and 17.9 with covered by Al thin film for dot electrodes at 1 V reverse bias voltage. A higher photo-to-dark current ratio was obtained for net electrodes, the Iphoto/Idark is 52.6 without covered by Al thin film; after covered by Al thin film, the Iphoto/Idark achieved a high value of 134.
In addition, the solar cell performance with this structure is measured by using a simulated solar source of 1000W/cm2 and a high conversion efficiency of 8.26% is obtained for dot electrodes with Al thin films.
封面內頁
簽名頁
授權書.........................iii
中文摘要........................iv
英文摘要........................v
誌謝 ....................... ..vi
目錄..........................vii
圖目錄.........................ix
表目錄.........................xi

第一章 前言 ......................01
第二章 原理 ......................03
2.1 矽鍺的基本特性...................03
2.2光檢測器原理.....................07
2.2.1 光的種類................ .... 07
2.2.2 輻射轉換.....................07
2.2.3 光的吸收.....................08
2.2.4 P-N接面..................... 09
2.2.5 P-N與PIN感光二極體................12
第三章 元件製程、光電量測與材料分析 ...........17
3.1薄膜成長系統.....................17
3.2樣品清洗.......................18
3.3蒸鍍機系統(Thermal Evaporator System).......19
3.4傳統爐管退火系統(Conventional Furnace Annealing).19
3.5光電量測系統.....................20
3.5.1電性量測(Current ─ Voltage measurement)....20
3.5.2光譜響應量測(Spectral response measurement) ..21
3.5.3響應率量測(Responsivity measurement).... ..21
第四章 實驗結果與討論.................. 25
4.1歐姆電極.......................25
4.2 PL量測 .......................28
4.3電性量測.......................29
4.4光譜響應.......................39
4.5太陽能電池之量測...................41
第五章 結論與未來展望..................44
[1] J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory, and R. T. Lynch, "Pseudomorphic growth of GexSi1-x on silicon by molecular beam epitaxy," Appl. Phys. Lett, Vol.44, pp. 102-104 (1984)
[2] R. People, and J. C. Bean, "Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures," Appl. Phys. Lett, Vol.47, pp. 322-324 (1985).
[3]J.-S. Rieh, D. Klotzkin, O. Qasaimeh, L.-H. Lu, K. Yang, L. P. B. Katehi, P. Bhattacharya, and E. T. Croke, “Monolithically integrated SiGe-Si,PIN-HBT front-end photoreceivers,” IEEE Photon. Technol. Lett., vol.10, pp. 415–417, Mar., 1998.
[4]F.G.Della Corte and F.Pezzimenti,”Design considerations for a-Si:/SiGe/Si heterojunction,”Quantum Electronics, IEEE journal of,22,pp.1696-1710(1986)
[5]J.Poortmans, S.C.Jain,DHJ Totterdell, M. Caymax, J.f.Nijs,R.P.Mertens and R. Van Overstraeten, ‘Theoretical calculation and experimental evidence of the real and apparent bandgap narrowing due to heavy doping in p-type silicon and strained Si1-x+Gex layers’,Solid State Electronics,36,1763(1993)
[6] People, R., Quantum Electronics, IEEE Journal of, Volume: 22, Issue: 9, pp.1696-1710 (1986)
[7] Splett, A.; Zinke, T.; Petermann, K.; Kasper, E.; Kibbel, H.; Herzog, H.-J.; Presting, H., Photonics Technology Letters, IEEE, Volume: 6, Issue: 1, pp.59-61 (1994)
[8] Shi, Jin-Wei; Pei, Z.; Yuan, F.; Hsu, Y.-M.; Liu, C.-W.; Lu, S. C.; Tsai, M., Journal of Applied Physics, Vol. 85 Issue 14, pp.2947-2949 (2004)
[9] People, R.; Bean, J. C., Applied Physics Letters, Vol. 47 Issue 3, pp.322-324 (1985)
[10] S. M. Sze, J. Y. Zhang, ”Semiconductor Devices Physics and Technology”, Wiley Intersciwnce, pp.336.
[11]S. M. Sze, Physics of Semiconductor Devices,2nd ed., Wiley, New York, 1981, Chapter 12-14.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊