中文部份
吳東曄(2008)。應用類神經網路於預測台股指數之研究。國立屏東教育大學應用數學系碩士論文,屏東縣。沙昱宏(2008)。應用決策樹分類法與邏輯斯迴歸建構企業財務危機預警模式。國立彰化師範大學會計學系碩士論文,彰化縣。張文豪(2007)。銀行擔保貸款信用評等模式之研究。國立高雄第一科技大學財務管理所碩士論文,高雄市。許素娜(2011)。零售業潛在顧客篩選模式之建構。國立臺北科技大學商業自動化與管理研究所碩士論文,台北市。陳企漢(2008)。建構國防預算預測模式之研究-以倒傳遞類神經網路為例。佛光大學經濟學系碩士論文,宜蘭縣。陳姍霓(2004)。整合類神經網路、多元適應性雲形迴歸與分類迴歸樹於信用平等模式之建構-以房屋貸款為例。輔仁大學管理學研究所碩士論文,新北市。葉建良(2006)。利用CART分類與迴歸樹建立消費者信用貸款違約風險評估模型之研究-以國內A銀行為例。輔仁大學應用統計學研究所碩士論文,新北市。賴季廷(2011)。類神經網路與技術分析於股票交易決策比較之研究。雲林科技大學工業工程與管理研究所碩士班碩士論文,雲林縣。謝妃美(2005)。銀行信用評等模式之建構-以某商銀之現金卡客戶為例。輔仁大學金融研究所碩士論文,新北市。簡名芝(2010)。運用CART建構競合策略決策支援模式-以LED產業為例。中原大學企業管理研究所碩士論文,桃園縣。簡啟鴻(2006)。銀行個人消費信用貸款授信風險評估模式與放款訂價策略之分析 -以國內某一銀行為例。國立東華大學高階經營管理碩士在職專班碩士論文,花蓮縣。英文部份
(GAO), U. S. G. A. O. (2009). CREDIT CARDS: Rising Interchange Fees Have Increased Costs for Merchants, but Options for Reducing Fees Pose Challenges.
Bourreau, M., & Verdier, M. (2010). Private cards and the bypass of payment systems by merchants. Journal of Banking & Finance, 34(8), 1798-1807.
Carbó-Valverde, S., & Liñares-Zegarra, J. M. (2011). How effective are rewards programs in promoting payment card usage? Empirical evidence. Journal of Banking & Finance, 35(12), 3275-3291.
Chakravorti, S., & To, T. (2007). A theory of credit cards. International Journal of Industrial Organization, 25(3), 583-595.
Ching, A. T., & Hayashi, F. (2010). Payment card rewards programs and consumer payment choice. Journal of Banking & Finance, 34(8), 1773-1787.
Chou, S.-M., Lee, T.-S., Shao, Y. E., & Chen, I. F. (2004). Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications, 27(1), 133-142.
Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math., 31, 377-403.
Frankel, A. S. (1988). Monopoly and competition in the supply and exchange of money. Antitrust Law Journal, 66, 313-361.
Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. The Annuals of Statistics, 19(1), 1-141.
Garcia Nieto, P. J., Sánchez Lasheras, F., de Cos Juez, F. J., & Alonso Fernández, J. R. (2011). Study of cyanotoxins presence from experimental cyanobacteria concentrations using a new data mining methodology based on multivariate adaptive regression splines in Trasona reservoir (Northern Spain). Journal of Hazardous Materials(0).
Huang, H. Y., Shao, Y. J., Hou, C. D., & Hsieh, M. D. (2011). Identifying the Contributors of the Multivariate Variability Control Chart Using Hierarchical Support Vector Machines. ICIC Express Letters, 5(9(B)), 3543-3547.
Julian, W. (2003). Pricing in debit and credit card schemes. Economics Letters, 80(3), 305-309.
Lee, T.-S., Chiu, C.-C., Chou, Y.-C., & Lu, C.-J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50(4), 1113-1130.
Marianne, V. (2010). Interchange fees and incentives to invest in payment card systems. International Journal of Industrial Organization, 28(5), 539-554.
Ongena, S., Tümer-Alkan, G., & Vermeer, B. (2011). Corporate choice of banks: Decision factors, decision maker, and decision process — First evidence. Journal of Corporate Finance, 17(2), 326-351.
Osei-Bryson, K.-M., & Ko, M. (2004). Exploring the relationship between information technology investments and firm performance using regression splines analysis. Information & Management, 42(1), 1-13.
Shahsavani, D., Tarantola, S., & Ratto, M. (2010). Evaluation of MARS modeling technique for sensitivity analysis of model output. Procedia - Social and Behavioral Sciences, 2(6), 7737-7738.
Shao, Y. J., Huang, H. Y., & Chen, Y. J. (2010). Determining the sources of variance shifts in a multivariate process using flexible discriminant analysis. ICIC Express Letters, 4(5(A)), 1573-1578.
VISA. (2009). Visa Inc. Overview.
Zhu, W. (2008). Market structure and credit card pricing: what drives the interchange? : Federal Reserve Bank of Kansas City.