|
參考文獻 [1]N. K. Nikolova, 2011, “Microwave imaging for breast cancer,” IEEE Microwave Magazine, vol. 12, Iss. 7, pp. 78-94. [2]S. R. H. Davidson and M. D. Sherar, 2003, “Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material,” Int. J. Hyperthermia, vol. 19, no. 5, pp. 551-562. [3]Y. Yuan, C. Wyatt, P. Maccarini, P. Stauffer, O. Craciunescu, J. Macfall, M. Dewhirst, and S. K. Das, 2012, “A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification,” Phys. Med. Biol., vol. 57, no. 7, pp. 2021-2037. [4]M. Lazebnik, E. L. Madsen, G. R. Frank, and S. C. Hagness, 2005, “Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications,” Phys. Med. Biol., vol. 50, no. 18, pp. 4245-4258. [5]D. Popovic, L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S C Hagness and J. Booske, 2005, “Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies,” IEEE Trans. Microw. Theory Tech. vol. 53, pp. 1713–22. [6]Fong P M, Keil D C, Does M D and Gore J C, 2001, “Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere,” Phys. Med. Biol., vol. 46, pp. 3105–13. [7]Gabriel S, Lau RWand Gabriel C, 1996, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol., vol. 41, pp. 2271–93. [8]Madsen E L, Kelly-Fry E and Frank G R, 1988, “Anthropomorphic phantoms for assessing systems used in ultrasoundimaging of the compressed breast Ultrasound,” Med. Biol., vol. 14, pp. 182–201. [10]Madsen E L, Zagzebski J A and Frank G R, 1982, “Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials Ultrasound,” Med. Biol., vol. 8, pp. 277–287. [11]Li, X.; Bond, E.J.; Veen, B.D.V.; Hagness, S.C., 2005, “An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection,” IEEE Antennas Propag. Mag., vol. 47, pp. 19‒34. [12]Lai, J.C.Y.; Soh, C.B.; Gunawan, E.; Low, K.S., 2010, “Homogeneous and heterogeneous breast phantoms for ultra-wideband microwave imaging applications,” Prog. Electromagn. Res., vol. 100, pp. 397‒415. [13]Hahn, C.; Noghanian, S., 2012, “Heterogeneous breast phantom development for microwave imaging using regression models,” Int. J. Biomed. Imag., vol. 6, pp. 1‒12. [14]Moll, J.; Kelly, T.N.; Byrne, D.; Sarafianou, M.; Krozer, V.; Craddock, I.J., 2014, “Microwave radar imaging of heterogeneous breast tissue integrating a priori information,” Int. J. Biomed. Imag., vol. 17, pp. 1‒10. [15]Said, M.S.M.; Seman, N.; Jaafar, H., 2015, “Characterization of human head phantom based on its dielectric properties for wideband microwave imaging application,” J. Teknologi., vol. 73, pp. 43‒49. [16]Bini, M.G.; Ignesti, A.; Millanta, L.; Olmi, R.; Rubino, N.; Vanni, R., 1984, “The polyacrylamide as a phantom material for electromagnetic hyperthermia studies,” IEEE Trans. Biomed. Eng., vol. 31, pp. 317‒322. [17]Andreuccetti, D.; Bini, M.; Ignesti, A.; Olmi, R.; Rubino, N.; Vanni, R., 1988, “Use of polyacrylamide as a tissue-equivalent material in the microwave range,” IEEE Trans. Biomed. Eng., vol. 35, pp. 275‒277. [18]Youngs, I.J.; Treen, A.S.; Fixter, G.; Holden, S., 2002, “Design of solid broadband human tissue simulant materials,” IEE Proc.-Sci. Meas. Technol., vol. 149, pp. 232–238. [19]Lazebnik, M.; Madsen, E.L.; Frank, G.R.; Hagness, S.C., 2005, “Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications,” Phys. Med. boil., vol. 50, pp. 4245‒4258. [20]Solanki, L.S.; Singh, S.; Singh, D., 2016, “Development and modeling of the dielectric properties of tissue-mimicking phantom materials for ultra-wideband microwave breast cancer detection,” Optik-Inter. J. Light Electr. Optics, vol. 127, pp. 2217‒2225. [21]Gabriel, C., 2007, “Tissue equivalent material for hand phantoms,” Phys. Med. boil., vol. 52, pp. 4205‒4210. [22]Garrett, J.; Fear, E., 2014, “Stable and flexible materials to mimic the dielectric properties of human soft tissues,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 599‒602. [23]Liu, L.; Kong, L.B.; Matitsine, S., 2008, “Tunable effective permittivity of nanotube composites,” Appl. Phys. Lett., vol. 93, pp. 113–106. [24]Sarkanen, K.V.; Ludwig, C.H., 1971, Lignins: Occurrence, Formation, Structure, and Reactions; Wiley Intersci: New York, NY, USA. [25]Marinho, B.; Ghislandi, M.; Tkalya, E.; Koning, C.E.; de With, G., 2012, “Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black and graphite powder,” Powd. Tech., vol. 221, pp. 351–358. [26]Kharade, A.Y.; Kale, D.D., 1999, “Lignin-filled polyolefins,” J. Appl. Polym. Sci., vol. 72, pp. 1321‒1326. [27]Shi, S.L.; Zhang, L.Z.; Li, J.S., 2009, “Electric and dielectric properties of multiwall carbon nanotube/polyaniline composites,” J. Polym. Res., vol. 16, pp. 395‒399. [28]Gabriel, S.; Lau, R.W.; Gabriel, C., 1996, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol., vol. 41, pp. 2251‒2269. [29]Berube, D.; Ghannouchi, F.; Savard, P., 1996, “A comparative study of four open-ended coaxial probe models for permittivity measurements of lossy dielectric/biological materials at microwave frequencies,” IEEE Trans. Microw. Theory Tech., vol. 44, pp. 1928–1934. [30]Popovic, D.; McCartney, L.; Beasley, C.; Lazebnik, M.; Okoniewski, M.; Hagness, S.C.; Booske, J.H., 2005, “Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 1713‒1722.
|