跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/01 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾耀賢
研究生(外文):Chung, Yaoh-Sien
論文名稱:有機與無機材料之微波仿生假體之研製
論文名稱(外文):Study on microwave phantom develop of organic and inorganic materials
指導教授:楊茹媛楊茹媛引用關係
指導教授(外文):Yang, Ru-Yuan
口試委員:潘正堂邱正杰
口試日期:2016-07-05
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:87
中文關鍵詞:仿生假體醫學影像明膠介電特性
外文關鍵詞:Phantommedical imaginggelatindielectric properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為探討利用牛皮明膠、有機-無機複合材料及煤油加紅花籽油之混合油所製成的仿生微波假體,此仿生材料相似多種在人體不同部位的生物組織。能透過改變油的比例來選擇模仿人體中不同的部位,可應需求製出不同種類的生物組織,並且能應用在頻率範圍 500 MHz 至 20 GHz之間進行微波量測,並評估該仿生材料長期穩定性,討論摻雜不同種類的材料對此假體所帶來介電特性的影響。
無摻雜的微波假體,介電常數約為23±2。在本實驗之測量結果中,透過碳基材料之摻雜可使得所製備之微波假體之介電常數與電導率增加約5%至20%,而其增加比率與摻雜量呈現正相關係。因此,因應各種不同類型之介電特性需求,透過有效控制碳基材料之摻雜量,所製備之微波假體之介電特性可獲得有效之控制;此外,所提出之材料是適用於微波醫療成像系統所使用之微波假體。

We use the hiding gelatin, oil, organic-inorganic composite materials etc., to form the biomimetic materials. These biomimetic materials are similar in many different parts of the body of biological tissue. By varying the ratio of oil, it can be selected to mimic the human body in different parts of biological tissue, and can be measured in the microwave frequency range between 500 MHz to 20 GHz to find the trend of characteristics of dielectric constant and conductivity. Effect of dopants on the dielectric characteristics, long-term stability, and conductivity also be discussed in this study.
Without doping, the dielectric constant was equal to 23±2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By properselection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system.

目錄
摘要 I
Abstract II
謝誌 IV
目錄 V
表目錄 VIII
圖目錄 IX
第1章 緒論 1
1.1前言 1
1.2文獻回顧 3
1.3研究動機與目的 4
第2章基礎理論 5
2.1微波簡介 5
2.1.1微波的吸收性和穿透性 5
2.1.2微波對生物體的應用 6
2.2生物組織量測原理 6
2.2.1生物組織電學特性 7
2.2.2電解液導電特性 7
2.2.3組織的阻抗特性 7
2.2.4組織的導電率 7
2.3量測架構與方法 9
第3章實驗步驟與分析 13
3.1實驗主題一-明膠與混合油 13
3.1.1實驗目的 13
3.1.2實驗材料 13
3.1.3實驗方法與步驟 14
3.2實驗主體二-單一摻雜物添加 15
3.2.1實驗目的 15
3.2.2實驗材料 15
3.2.3實驗方法與步驟 15
3.3實驗主題三-摻雜步驟順序測試 17
3.3.1實驗目的 17
3.3.2實驗材料 17
3.3.3實驗方法與步驟 17
3.4實驗主題四-同時摻雜兩種材料 21
3.4.1實驗目的 21
3.4.2實驗材料 21
3.4.3實驗方法與步驟 21
3.5實驗主題五-加熱測試 23
3.5.1實驗目的 23
3.5.2實驗材料 23
3.5.3實驗方法與步驟 23
第4章 結果與討論 31
4.1實驗主題一-明膠與混合油 31
4.1.1介電常數比較-一般保存下 31
4.1.2介電常數比較-真空下保存 33
4.1.3導電度比較-一般保存下 35
4.1.4導電度-真空下保存 36
4.2實驗主體二-單一摻雜物添加 38
4.2.1介電常數比較-各比例奈米碳管 38
4.2.2導電度比較-各比例奈米碳管 41
4.2.3介電常數比較-各比例石墨烯 44
4.2.4導電度比較-各比例石墨烯 46
4.2.5介電常數比較-各比例木質素 49
4.2.6導電度比較-各比例木質素 52
4.3實驗主題三-摻雜順序測試 55
4.3.1介電常數比較 55
4.4實驗主題四-同時摻雜兩種材料 56
4.4.1介電常數比較-各比例摻雜 56
4.4.2導電度比較-各比例摻雜 58
4.5實驗主題五-加熱測試 59
4.5.1介電常數比較-在不同溫度下量測 59
4.5.2導電度比較-在不同溫度下量測 60
第5章結論 82
參考文獻 83
作者簡介 87


參考文獻
[1]N. K. Nikolova, 2011, “Microwave imaging for breast cancer,” IEEE Microwave Magazine, vol. 12, Iss. 7, pp. 78-94.
[2]S. R. H. Davidson and M. D. Sherar, 2003, “Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material,” Int. J. Hyperthermia, vol. 19, no. 5, pp. 551-562.
[3]Y. Yuan, C. Wyatt, P. Maccarini, P. Stauffer, O. Craciunescu, J. Macfall, M. Dewhirst, and S. K. Das, 2012, “A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification,” Phys. Med. Biol., vol. 57, no. 7, pp. 2021-2037.
[4]M. Lazebnik, E. L. Madsen, G. R. Frank, and S. C. Hagness, 2005, “Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications,” Phys. Med. Biol., vol. 50, no. 18, pp. 4245-4258.
[5]D. Popovic, L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S C Hagness and J. Booske, 2005, “Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies,” IEEE Trans. Microw. Theory Tech. vol. 53, pp. 1713–22.
[6]Fong P M, Keil D C, Does M D and Gore J C, 2001, “Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere,” Phys. Med. Biol., vol. 46, pp. 3105–13.
[7]Gabriel S, Lau RWand Gabriel C, 1996, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol., vol. 41, pp. 2271–93.
[8]Madsen E L, Kelly-Fry E and Frank G R, 1988, “Anthropomorphic phantoms for assessing systems used in ultrasoundimaging of the compressed breast Ultrasound,” Med. Biol., vol. 14, pp. 182–201.
[10]Madsen E L, Zagzebski J A and Frank G R, 1982, “Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials Ultrasound,” Med. Biol., vol. 8, pp. 277–287.
[11]Li, X.; Bond, E.J.; Veen, B.D.V.; Hagness, S.C., 2005, “An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection,” IEEE Antennas Propag. Mag., vol. 47, pp. 19‒34.
[12]Lai, J.C.Y.; Soh, C.B.; Gunawan, E.; Low, K.S., 2010, “Homogeneous and heterogeneous breast phantoms for ultra-wideband microwave imaging applications,” Prog. Electromagn. Res., vol. 100, pp. 397‒415.
[13]Hahn, C.; Noghanian, S., 2012, “Heterogeneous breast phantom development for microwave imaging using regression models,” Int. J. Biomed. Imag., vol. 6, pp. 1‒12.
[14]Moll, J.; Kelly, T.N.; Byrne, D.; Sarafianou, M.; Krozer, V.; Craddock, I.J., 2014, “Microwave radar imaging of heterogeneous breast tissue integrating a priori information,” Int. J. Biomed. Imag., vol. 17, pp. 1‒10.
[15]Said, M.S.M.; Seman, N.; Jaafar, H., 2015, “Characterization of human head phantom based on its dielectric properties for wideband microwave imaging application,” J. Teknologi., vol. 73, pp. 43‒49.
[16]Bini, M.G.; Ignesti, A.; Millanta, L.; Olmi, R.; Rubino, N.; Vanni, R., 1984, “The polyacrylamide as a phantom material for electromagnetic hyperthermia studies,” IEEE Trans. Biomed. Eng., vol. 31, pp. 317‒322.
[17]Andreuccetti, D.; Bini, M.; Ignesti, A.; Olmi, R.; Rubino, N.; Vanni, R., 1988, “Use of polyacrylamide as a tissue-equivalent material in the microwave range,” IEEE Trans. Biomed. Eng., vol. 35, pp. 275‒277.
[18]Youngs, I.J.; Treen, A.S.; Fixter, G.; Holden, S., 2002, “Design of solid broadband human tissue simulant materials,” IEE Proc.-Sci. Meas. Technol., vol. 149, pp. 232–238.
[19]Lazebnik, M.; Madsen, E.L.; Frank, G.R.; Hagness, S.C., 2005, “Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications,” Phys. Med. boil., vol. 50, pp. 4245‒4258.
[20]Solanki, L.S.; Singh, S.; Singh, D., 2016, “Development and modeling of the dielectric properties of tissue-mimicking phantom materials for ultra-wideband microwave breast cancer detection,” Optik-Inter. J. Light Electr. Optics, vol. 127, pp. 2217‒2225.
[21]Gabriel, C., 2007, “Tissue equivalent material for hand phantoms,” Phys. Med. boil., vol. 52, pp. 4205‒4210.
[22]Garrett, J.; Fear, E., 2014, “Stable and flexible materials to mimic the dielectric properties of human soft tissues,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 599‒602.
[23]Liu, L.; Kong, L.B.; Matitsine, S., 2008, “Tunable effective permittivity of nanotube composites,” Appl. Phys. Lett., vol. 93, pp. 113–106.
[24]Sarkanen, K.V.; Ludwig, C.H., 1971, Lignins: Occurrence, Formation, Structure, and Reactions; Wiley Intersci: New York, NY, USA.
[25]Marinho, B.; Ghislandi, M.; Tkalya, E.; Koning, C.E.; de With, G., 2012, “Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black and graphite powder,” Powd. Tech., vol. 221, pp. 351–358.
[26]Kharade, A.Y.; Kale, D.D., 1999, “Lignin-filled polyolefins,” J. Appl. Polym. Sci., vol. 72, pp. 1321‒1326.
[27]Shi, S.L.; Zhang, L.Z.; Li, J.S., 2009, “Electric and dielectric properties of multiwall carbon nanotube/polyaniline composites,” J. Polym. Res., vol. 16, pp. 395‒399.
[28]Gabriel, S.; Lau, R.W.; Gabriel, C., 1996, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol., vol. 41, pp. 2251‒2269.
[29]Berube, D.; Ghannouchi, F.; Savard, P., 1996, “A comparative study of four open-ended coaxial probe models for permittivity measurements of lossy dielectric/biological materials at microwave frequencies,” IEEE Trans. Microw. Theory Tech., vol. 44, pp. 1928–1934.
[30]Popovic, D.; McCartney, L.; Beasley, C.; Lazebnik, M.; Okoniewski, M.; Hagness, S.C.; Booske, J.H., 2005, “Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 1713‒1722.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top