跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 14:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊仁
研究生(外文):Chun-jen Chen
論文名稱:蛋白質結構預測結果之效益評估函數
論文名稱(外文):A New Fitness Function for Evaluating the Quality of Predicted Protein Structures
指導教授:楊昌彪楊昌彪引用關係
指導教授(外文):Chang-Biau Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:49
中文關鍵詞:蛋白質三級結構預測
外文關鍵詞:predictiontertiary structureprotein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質結構在我們了解此蛋白質的功能上扮演著非常重要的角色。而從蛋白質的一級序列預測其三級結構在生物資訊領域中也有著重要的幫助。蛋白質的真實結構可經由一些極耗費時間及成本的技術取得,但蛋白質結構預測可幫助我們預先判斷此蛋白質的功能。在這裡我們發展出三項數值可以運用在蛋白質骨幹結構預測上的效益評估函數。從結果中可以顯示,我們經由GP(Genetic Programming)產生出來的效益評估函數於CASP8競賽中的蛋白質預測序列中有80%高於平均值。
For understanding the function of a protein, the protein structure plays an important role. The prediction of protein structure from its primary sequence has significant assistance in bioinformatics. Generally, the real protein structures can be reconstructed by some costly techniques, but predicting the protein structures helps us guess the functional expression of a protein in advance. In this thesis, we develop three terms as the materials of the fitness function that can be successfully used in protein backbone structure prediction. In the result of this thesis, it shows that over 80% of good values calculated from our fitness function, which are generated by the genetic programming, are better than the average in the CASP8.
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Amino Acids in Proteins . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Levels of Protein Structures . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Conformational Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Protein Structure Prediction Methods . . . . . . . . . . . . . . . 10
2.5 Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Root Mean Square Deviation . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Critical Assessment of Protein Structure Prediction . . . . . . . . . . 20
Chapter 3. Our Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 4. Experimental Results . . . . . . . . . . . . . . . . . . . . . .31
Chapter 5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
[1] http://en.wikipedia.org/wiki/.
[2] http://www.chempep.com/.
[3] http://beagle.sourceforge.net/.
[4] M. Abramowitz and M. W. Davidson, “Molecular expressions microscopy primer: Introduction to microscopy.” http://micro.magnet.fsu.edu/primer/index.html.
[5] R. Agarwala, S. Batzoglou, and V. Dancik, “Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP model,” Journal of Computational Biology, Vol. 4, No. 3, pp. 275–296, 1997.
[6] S. F. Altschul, “Amino acid substitution matrices from an information theoretic perspective,” Journal of Molecular Biology, Vol. 219, pp. 555–565, 1991.
[7] S. F. Altschul, W. Gish, W. Miller, E.W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, Vol. 215, pp. 403–410, 1990.
[8] C. B. Anfinsen, “Principles that govern the folding of protein chains,” Science, Vol. 181, pp. 223–230, 1973.
[9] P. Baldi, Y. Chauvin, T. Hunkapiller, and M. A. McClure, “Hidden markov models of biological primary sequence information,” Proceedings of the National Academy of Sciences, Vol. 91, pp. 1059–1063, 1994.
[10] H. M. Berman, T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne, K. Burkhardt, Z. Feng, G. L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J. D. Westbrooka, and C. Zardeckia, “The protein data bank.,” Biological Crystallography, Vol. 58, pp. 899–907, 2002.
[11] T. L. Blundell, B. L. Sibanda, M. J. E. Sternberg, and J. M. Thornton, “Knowledge-based prediction of protein structures and the design of novel molecules.,” Nature, Vol. 326, pp. 347–352, 1987.
[12] Y. Y. Chen, C. B. Yang, and K. T. Tseng, “Prediction of protein structures based on curve alignment,” Proceedings of the 20th Workshop on Combinatorial Mathematics and Computation Theory, Chiayi, Taiwan, pp. 34–44, 2003.
[13] J. Cheng and P. Baldi, “A machine learning information retrieval approach to protein fold recognition.,” BIOINFORMATICS, Vol. 22, pp. 1456–1463, 2006.
[14] T. L. Chiu and R. A. Goldstein, “Optimizing energy potentials for success in protein tertiary structure prediction.,” Folding and Design, Vol. 3, pp. 223–228,
1998.
[15] D. Cozzetto, A. Kryshtafovych, K. Fidelis, B. R. J. Moult, and A. Tramontano, “Evaluation of template-based models in casp8 with standard measures,”Proteins: Structure, Function, and Bioinformatics, Vol. 77, pp. 18–28, 2009.
[16] M. O. Dayhoff, R. Schwartz, and B. C. Orcutt, “A model of evolutionary change in proteins,” National Biomedical Research Foundation, pp. 345–358, 1978.
[17] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative learning approach to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53–66, 1997.
[18] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol. 26, No. 1, pp. 29–42, 1996.
[19] L. Ellis and K. H. Chow, “Protein structure prediction from primary sequence..”http://www.biophysics.org/, Biophysical Society. Maryland, USA, 2004.
[20] C. Gagne and M. Parizeau, “Genericity in evolutionary computation software tools: Principles and case-study.,” International Journal on Artificial Intelligence Tools, Vol. 15, pp. 173–194, 2006.
[21] S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices from protein blocks,” Proceedings of the National Academy of Sciences, Vol. 89, USA, pp. 10915–10919, 1992.
[22] J. L. J. Lee, S. Y. Kim, “Protein structure prediction based on fragment assembly and parameter optimization.,” Biophysical Chemistry, Vol. 115, pp. 209–214, 2005.
[23] M. S. Johnson, N. Srinivasan, R. Sowdhamini, and T. L. Blundell, “Knowledge-based protein modeling.,” Critical Reviews in Biochemistry and Molecular Biology, Vol. 29, pp. 1–68, 1994.
[24] D. T. Jones, “Genthreader: An efficient and reliable protein fold recognition method for genomic sequences,” Journal of Molecular Biology, Vol. 287,
pp. 797–815, 1999.
[25] A. Kryshtafovych, O. Krysko, Z. D. P. Daniluk, and K. Fidelis, “Protein structure prediction center in casp8,” Proteins: Structure, Function, and Bioinformatics, Vol. 77, pp. 5–9, 2009.
[26] J. Lee, S. Y. Kim, and J. Lee, “Protein structure prediction based on fragment assembly and parameter optimization,” Biophysical Chemistry, Vol. 115,
pp. 209–214, 2005.
[27] R. C. T. Lee, “Computational biology.” http://www.csie.ncnu.edu.tw/, Department of Computer Science and Information Engineering, National Chi-Nan
University, Taiwan, 2001.
[28] M. A. MartiRenom, A. C. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali, “Comparative protein structure modeling of genes and genomes.,” Annual Review of Biophysics and Biomolecular Structure, Vol. 29, pp. 291–325, 2000.
[29] M. Milostan, A. Kryshtafovych, K. Fidelis, P. Daniluk, V. Nakonechnyy, and Z. Dmytriv, “Critical Assessment of Techniques for Protein Structure Prediction.” http://predictioncenter.org/, Genome Center, University of California, Davis.
[30] H. Nakashima, K. Nishikawa, and T. Ooi, “The folding type of a protein is relevant to the amino acid composition,” Journal of Biochemical, Vol. 99, pp. 153–162, 1986.
[31] N. I. H. (National Institutes of Health), “NCBI (National Center for Biotechnology Information).” http://www.ncbi.nlm.nih.gov/.
[32] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” Journal of
Molecular Biology, Vol. 48, pp. 443–453, 1970.
[33] J. W. Prothero, “Correlation between the distribution of amino acids and alpha helices,” Journal of Biophysics, Vol. 6, pp. 367–370, 1966.
[34] S. T. Rao and M. G. Rossmann, “Comparison of super-secondary structures in proteins,” Journal of Molecular Biology, Vol. 76, pp. 241–256, 1973.
[35] A. Sali and T. L. Blundell, “Comparative protein modeling by satisfaction of spatial restraints for genomic sequences,” Journal of Molecular Biology, Vol. 234, pp. 779–815, 1993.
[36] S. Sette and L. Boullart, “Genetic programming: principles and applications.,” Engineering Applications of Artificial Intelligence, Vol. 14, pp. 727–736, 2001.
[37] T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,” Journal of Molecular Bioinformatics, Vol. 147, pp. 195–197, 1981.
[38] M. S. Smyth and J. H. J. Martin, “X ray crystallography,” Journal of Clinical Pathology, Vol. 53, pp. 8–14, 1999.
[39] W. R. Taylor and C. A. Orengo, “Protein structure alignment.,” Journal of Molecular Biology, Vol. 208, pp. 1–22, 1989.
[40] C. C. Wang, C. B. Yang, H. Y. Ann, and H. Y. Chang, “Protein structure prediction based on the sliced lattice model,” 2008 Conference on Information Technology and Applications in Outlying Islands (ITAOI2008), Penghu,
Taiwan, pp. 74–82, 2008.
[41] S. Wu and Y. Zhang, “Lomets: A local meta-threading-server for protein structure prediction.,” Nucleic Acids Research, Vol. 35, pp. 1–8, 2007.
[42] A. Zemla, “Lga: a method for finding 3d similarities in protein structures,” Nucleic Acids Research, Vol. 31, pp. 3370–3374, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蘇建文(1980)。兒童及青少年焦慮情緒之發展及其相關因素之研究。教育心理學報,13,85-94。
2. 林惠雅(1998)。母親信念、教養目標與教養行為(一):內涵意義之探討(1)。應用心理研究,2,143-180。
3. 吳武典(1997)。國中偏差行為學生學校生活適應之探討。國立台灣師範大學教育心理與輔導學系教育心理學報,29,25-50。
4. 林惠雅(1995)。父母教養行為問卷之編製。應用心理學報,4,39-72。
5. 陳富美(2007)。親子在教養行為上的認知差異:預測子方教養知覺的因素探討,中華心理衛生學刊,20(10),1- 30。
6. 鄭翠娟(1993)。高、低焦慮兒童認知與適應行為之評估研究。嘉義師院學報,7,19-76。
7. 陳富美( 2002 )。母親的權威教養、民主教養、與放縱教養的交互作用與幼兒社會行 為之探討。中華家政學刊,32,75-92。
8. 程秀蘭、林世華、吳麗娟(2001)。大學生知覺父母權威性與其生氣歷程、憂鬱傾向之相關研究。教育心理學報,32(2),19- 44。
9. 鄭如安(1994)。談數學焦慮之形成與輔導。高市文教,52,29-31。
10. 羅國英(2000)。母親教養期望與親職壓力及青少年親子關係知覺的關聯—兼談學業成就於其中的角色。東吳社會工作學報,6,35-72。
11. 張芳蘭(1991)。育幼 期父母親生活調適及其影響因素之研究。國立成功大學社會科學學報,4,215-239。
12. 高淑芳、陸洛(2001)。父母管教態度與國中生升學壓力感受的關係。應用心理研究,10,221- 250。
13. 翁毓秀(2003)。女性單親親職壓力因應策略。社區發展季刊,101,70-101。
14. 陳若琳、李青松(2001)。台北縣雙工作家庭父母親的親職喜悅與壓力之探討。生活科學學報,7,157-179。
15. 林建平(1995)。學習動機的歸因與輔導。諮商與輔導,115,42-45。