跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾正豐
研究生(外文):Cheng-feng Tseng
論文名稱:不等向壓密飽和砂土之動態變形行為
論文名稱(外文):Dynamic deformation behavior of saturated sandy soils under anisotropic consolidation
指導教授:黃俊鴻黃俊鴻引用關係
指導教授(外文):Jin-hung Hwang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:256
中文關鍵詞:相對密度動力三軸試驗有效圍壓
外文關鍵詞:Volumetric strainExcess pore pressureDifferential settlementAnisotropicResidual deformationCyclic deformationLiquefactionDynamic triaxial test
相關次數:
  • 被引用被引用:2
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用動力三軸試驗儀器量測飽和石英矽砂之動態強度試驗,主要在求得不同相對密之石英矽砂試體在等向及不等向壓密條件下之動態強度曲線。本研究控制有效圍壓為0.5及1.0 kg/cm2,進行等向壓密Kc=1.0及非等向壓密Kc=1.5和Kc=2.0狀態下三種不同相對密度之動力三軸試驗,以探討石英矽砂於不同壓密應力比下及不同相對密度下的孔隙水壓、軸向變形行為及動態強度曲線之特性,作為分析液化地盤變形行為之參考。
試驗結果顯示在等向壓密下,施加反覆應力越大所激發之極限孔隙水壓比越低,在非等向壓密下,施加反覆應力越大所激發之極限孔隙水壓比越大,當壓密應力比越大受動態荷載作用下所激發之極限孔隙水壓比越小。石英矽砂之動態剪應力比隨著相對密度及壓密應力比增加而增加,但隨著有效圍壓的增加而下降。本研究並將試驗結果整理成不同相對密度及壓密應力比下反覆剪應力與剪應變及反覆軸差應力與軸向應變關係之關係,可用於估計土壤受震所產生之動態變形量。
The saturated soils beneath shallow foundation are in an anisotropic consolidation state before earthquake. Their dynamic behaviors are closely related to building settlement located in a liquefaction-susceptible ground. This study performed a series of cyclic triaxial tests on isotropically and anisotropically consolidated remolded quartz sands to deduce the residual deformation characteristics. The test conditions being varied include the relative density, the confining pressure, and the anisotropic consolidation ratio Kc. The test results show that the higher the relative density and the lower the confining pressure, the smaller the deformation deduced. The larger the Kc, the more the residual deformation and the less the cyclic component. It is also found the residual deformation of soil sample loaded first with compressive force is larger than that of soil sample loaded first with tensional force. The difference of the above two residual deformations can be used to assess the differential settlement of building located in a liquefiable ground.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XIV
符號說明 XV
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究方法 2
1.4論文架構 2
第二章 文獻回顧 5
2.1 動態強度與破壞準則之定義 5
2.2 以動力三軸模擬初始剪應力下之動態荷載 7
2.3 土壤受循環荷載作用下之超額孔隙水壓激發 9
2.4初始剪應力對動態強度之影響 12
2.5 有效圍壓對動態強度之影響 15
2.6相對密度對動態強度之影響 20
2.7室內動態強度試驗與現地應力之轉換 25
第三章 室內試驗 28
3.1試驗規劃 28
3.2動力三軸試驗 28
3.2.1 試體準備 28
3.2.2 動力三軸試驗設備 29
3.2.3 動力三軸試驗步驟 33
第四章 試驗結果與討論 44
4.1 動態強度試驗結果 44
4.2 動態荷載作用下反覆及殘餘應變之行為 60
4.3不同電壓波形作用下殘餘應變之行為 71
4.4 超額孔隙水壓之激發 74
4.5 應力路徑 82
4.6 動態強度曲線結果比較 86
4.7室內試驗動態強度與現地應力之轉換 98
4.8 體積應變與最大剪應變 122
第五章 結論與建議 127
5.1 結論 127
5.2建議 129
參考文獻 130
附錄A石英矽砂結果之附圖 133
附錄B 石英矽砂壓密試驗之原始資料 223
1.宋勻文,「台北盆地北投地區基隆河黏土之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
2.周旭宏,「台北盆地北投地區基隆河黏土之動態強度」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。
3.林友勝,「不等向壓密飽和夯實土壤之動態變形行為」,碩士論文,國立中央大學土木工程研究所,中壢 (2008)。
4.陳毅,「不同圍壓下不等向壓密飽和夯實土壤之動態變形行為」,碩士論文,國立中央大學土木工程研究所,中壢 (2008)。
5.許曉峰,「臺北盆地基二區粉質黏土之大地工程特性」,碩士論文,國立中央大學土木工程研究所,中壢 (1992)。
6.曾豐升,「現地土壤之液化強度與震陷特性」,碩士論文,國立中央大學土木工程研究所,中壢 (2002)。
7.吳偉特,「台灣地區沙性土壤液化潛能之初步分析」,土木水利季刊,第六卷,第二期,第39-70頁(1979)
8.曾清祥,「砂土液化及穩定狀態之研究」,碩士論文,國立台灣工業技術學院營建工程技術研究所,台北 (1996)
9.Yasuda, N., Matsumoto, N., Yoshioka, R., and Takahashi M., “Undrained monotonic and cyclic strength of compacted rockfill material from triaxial and torsional simple shear tests,” Canadian Geotechnical Journal, Vol. 34, pp. 357-367 (1997).
10.Amini, F., and Qi, G.Z., “Liquefaction testing of stratified silty sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 3, pp. 208-217(2000).
11.Ishihara, K., and Yoshimine, M., “Evaluation of settlements in sand deposits following liquefaction during earthquake,” Soils and Foundations, Vol. 32, No. 1, pp. 173-188 (1992).
12.Hyodo, M., Hyde, A.F.L., Aramaki, N., and Nakata, Y., “Undrained monotonic and cyclic shear behaviour of sand under low and high confining stresses,” Soils and Foundations, Vol. 42, No. 3, pp. 63-76 (2002)
13.Mulilis, J.P., Chen, C.K., and Seed, H.B., “The effects of method of sample preparation on the cyclic stress-strain behavior of sands,” Earthquake Engineering Research Center Report, No. EERC75-18, U.C. Berkeley (1975).
14.Seed, H.B., and Lee, K.L., “Liquefaction of saturated sand during cyclic loading,” Journal of the Soil Mechanics Foundation Division, ASCE, Vol. 92,No. SM6, pp. 105-133(1966).
15.Peacock, W.H., and Seed, H.B., “Sand liquefaction under cycle loading simple shear conditions,” Journal of he Soil Mechanics and Foundations Division,ASCE, Vol. 9, No. SM3, pp. 689-708(1968).
16.Castro, G., and Poulos, S.J., “Factor affecting liquefaction and cyclic mobility,”Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 501-516(1977).
17.Seed, H.B., Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J.Geotechnical Engineering Division, ASCE 105 (GT2), pp. 201-255(1979).
18.Hyodo, M., Murata, H., Yasufuku, N., and Fujii, T., “Undrained cyclic shear strength and residual shear strain of saturated sand by cyclic triaxial tests,” Soils and Foundations, Vol. 31, No. 3, pp. 60-76 (1991).
19.Seed, H. B. and Clarence K. C., “Clay Strength under Earthquake Loading Condition,” ASCE, Journal of the Soil Mechanics and Foundations Division, Vol. 92, No. SM2, pp. 53-78 (1966)
20.Xenaki, V.C., and Athanasopoulos, G.A., “Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam-Laboratory test results,” Soil Dynamics and Earthquake Engineering, Vol. 28, pp. 605-620 (2008).
21.Seed, R.B., Cetin, K.O., Moss, R.E.S., Kammerer, A.M., Wu, J., Pestana, J.M., et al. “Recent advances in soil liquefaction engineering: a unified andconsistent framework,”EERC Report, California, pp. 1-71(2003)
22.Della, N., Arab, A., Belkhatir, M., Missoum, H., “Identification of the behavior of the Chlef sand to static liquefaction,” Comptes Rendus Mecanique, pp. 282-290.(2009)
23.Zand, B., Tu, W., Amaya, P., Wolfe, W., Butalia, T., “An experimental investigation on liquefaction potential and post-liquefactionshear strength of impounded fly ash,” Journal Fuel, Vol.88, pp. 1160-1166(2009)
24.Boominathan, A., Hari, S., “Liquefaction strength of fly ash reinforced with randomly distributed fibers,” Soil Dynamic and Earthquake Engineering, Vol.22, pp. 1027-1033(2009)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top