跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張豪修
研究生(外文):Hao-Shiu Chang
論文名稱:基於模糊分群之均值位移影像追蹤演算法
論文名稱(外文):A Mean-Shift Video Object Tracking Algorithm Based on Fuzzy Clustering
指導教授:歐陽振森
指導教授(外文):Chen-Sen Ouyang
學位類別:碩士
校院名稱:義守大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:68
中文關鍵詞:K-Means分群法均值位移演算法影像追蹤
外文關鍵詞:K-Means clusteringMean shift algorithmVideo object tracking
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1181
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
隨著數位影像處理技術的快速進步與視訊產品的大量普及,結合了影像追蹤技術的電腦系統被廣泛應用於日常生活的各種領域中,例如監視系統、智慧型交通系統、停車場管理系統等。這些電腦視覺系統不僅可取代傳統大量仰賴人工視力的工作,更可避免因人為的疲累所帶來的疏失;而且在時效上,更具有即時回報突發狀況的能力,因此能大幅降低整體系統的時間成本。本論文研究方向以發展影像追蹤演算法為目的,利用K-means分群法將樣板影像資料分群,並導入模糊數的觀念產生影像追蹤過程中所需之特徵向量,最後結合均值移動演算法計算樣板影像目前的位置,達到追蹤的目標。
With the popularization of video products and the rapid progress in visual techniques in recent years, the computer systems with video object tracking technology have been applied in various fields in daily life, such as surveillance systems, intelligent traffic control systems, parking lot management systems, and so on. The computer visual systems not only replace manpower in a large number of traditional jobs but also can avoid the errors induced from human tiredness. Meanwhile, it has the ability to timely report back the accident, therefore the time costs of the entire system will be reduced substantially. The direction in this research is to develop a robust video object tracking approach. By the use of K-means clustering algorithm to automatically divide the video object image into several clusters and the principle of fuzzy theory to generate the feature vector, the mean shift algorithm is then applied to calculate the position of candidate template to achieve good performance in object tracking.
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅴ
表目錄 Ⅷ
一、緒論 1
1.1 研究背景與動機 1
1.2 論文架構 2
二、文獻回顧 3
三、研究方法 9
3.1 系統架構 9
3.2 RGB色彩模型正規化 11
3.3 K-MEANS自我建構分群演算法 12
3.4 樣板模型之建立 18
3.5 均值位移 21
3.6 找出新的運動物體中心點 23
四、實驗結果與討論 24
4.1 參數設定 25
4.2 實驗結果 25
範例一 25
範例二 30
範例三 36
範例四 40
範例五 43
範例六 46
五、結論及未來展望 50
參考文獻 52
[1]W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” IEEE Trans. Systems, Man, and Cybernetics-Part C: Applications and Reviews, vol. 34, no. 3, pp. 334-352, Aug 2004.
[2]D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Trans.Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564 – 577, May 2003.
[3]C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Tran.Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp.780 - 785, July 1997.
[4]C. Stauffer, W. Eric, and L. Grimson, ”Learning patterns of activity using real-time tracking,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp.747 - 757, August 2000.
[5]C. Yang, R. Duraiswami, and L. Davis, “Efficient mean-shift tracking via a new similarity measure,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 176-183, June 2005.
[6]T. Kurata, T. Okuma, M. Kourogi, and K. Sakaue, ”The hand mouse: GMM hand-color classification and mean shift tracking,” in Proc. IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, pp. 119-124, July 2001.
[7]J. Besada, A. Soto, G. Miguel, and J. Portillo, “Design of an A-SMGCS prototype at Barajas airport: airport surveillance sensors bias estimation,” in Proc. IEEE International Conference on Information Fusion, vol. 2, pp. 1344-1350, July 2005.
[8]T. Okada, S. Tsujimichi, and Y. Kosuge, “Multisensor vehicle tracking method for intelligent highway system,” in Proc. IEEE Digital Object Identifier Conference, pp. 291-296, July 2000.
[9]D. Focken, and R. Stiefelhagen, “Towards vision-based 3-D people tracking in a smart room,” in Proc. IEEE International Conference on Multimodal Interfaces, pp. 400-405, Oct 2002.
[10]C. Busso, S. Hernanz, C. W. Chu, S. Kwon, S. Lee, P. Georgiou, I. Cohen, and S. Narayanan, “Smart room: participant and speaker localization and identification,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp.1117-1120, March 2005.
[11]F. Yutao, and E. Gelenbe, “Adaptive object tracking and video compression with dynamic contours,” in Proc. IEEE Fifteenth National Radio Science Conference, pp. 311-326, Feb 1998.
[12]K. Hariharakrishnan, D. Schonfeld, P. Raffy, and F. Yassa, “Video tracking using block matching,” in Proc. IEEE International Conference on Image Processing, vol. 3, pp. 945-948, Sept 2003.
[13]K. Karmann and A. Brandt, “Moving object recognition using an adaptive background memory,” in Time-Varying Image Processing and Moving Object Recognition, V. Cappellini, Ed. Amsterdam, The Netherlands: Elsevier, vol. 2, 1990.
[14]M. Kilger, “A shadow handler in a video-based real-time traffic monitoring system,” in Proc. IEEE Workshop Applications of Computer Vision, Palm Springs, CA, pp. 11-18, 1992.
[15]A. Baumberg and D. C. Hogg, “Learning deformable models for racking the human body,” in Motion-Based Recognition, M. Shah and R. Jain, Eds. Norwell, MA: Kluwer, pp. 39-60, 1996.
[16]A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object detection in images by components,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, pp. 349-361, April 2001.
[17]A. Galata, N. Johnson, and D. Hogg, “Learning variable-length Markov models of behavior,” Comput. Vis. Image Understanding, vol. 81, no. 3, pp. 398-413, 2001.
[18]Y. Wu and T. S. Huang, “A co-inference approach to robust visual tracking,” in Proc. IEEE International Conference on Computer Vision, vol. 2, pp. 26-33, July 2001.
[19]C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, pp. 780-785, July 1997.
[20]S. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler, “Tracking groups of people,” Comput. Vis. Image Understanding, vol. 80, no. 1, pp. 42-56, 2000.
[21]N. Peterfreund, “Robust tracking of position and velocity with Kalman snakes,” IEEE Trans. Pattern Anal. Machine Intelligence, vol. 22, pp. 564-569, June 2000.
[22]M. Isard and A. Blake, “Contour tracking by stochastic propagation of conditional density,” in Proc. European Conference Computer Vision, pp. 343-356, 1996.
[23]R. Polana and R. Nelson, “Low level recognition of human motion,” in Proc. IEEE Workshop Motion of Non-Rigid and Articulated Objects, Austin, TX, pp. 77-82, Nov. 1994.
[24]B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-time computer vision system for vehicle tracking and traffic surveillance,” Transportation Research: Part C, vol. 6, no. 4, pp. 271-288, 1998.
[25]J. Malik and S. Russell, “Traffic surveillance and detection technology development (new traffic sensor technology),” Univ. of California, Berkeley, 1996.
[26]T. J. Fan, G. Medioni, and G. Nevatia, “Recognizing 3-D objects using surface descriptions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, pp. 1140-1157, Nov. 1989.
[27]D. S. Jang and H. I. Choi, “Active models for tracking moving objects,” Pattern Recognition, vol. 33, no. 7, pp. 1135-1146, 2000.
[28]I. A. Karaulova, P. M. Hall, and A. D. Marshall, “A hierarchical model of dynamics for tracking people with a single video camera,” in Proc. British Machine Vision Conference, pp. 262-352, 1996.
[29]S. Ju, M. Black, and Y. Yaccob, “Cardboard people: a parameterized model of articulated image motion,” in Proc. IEEE International Conference on Automatic Face and Gesture Recognition, pp. 38-44, Oct 1996.
[30]S. A. Niyogi and E. H. Adelson, “Analyzing and recognizing walking figures in XYT,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 469-474, June 1994.
[31]Q. Delamarre and O. Faugeras, “3D articulated models and multi-view tracking with physical forces,” Comput. Vis. Image Understanding, vol. 81, no. 3, pp. 328-357, 2001.
[32]S. Wachter and H. H. Nagel, “Tracking persons in monocular image sequences,” Comput. Vis. Image Understanding, vol. 74, no. 3, pp. 174-192, 1999.
[33]R. Plankers and P. Fua, “Articulated soft objects for video-based body modeling,” in Proc. Int. Conf. Computer Vision, Vancouver, BC, Canada, pp. 394–401, 1994.
[34]T. N. Tan, G. D. Sullivan, and K. D. Baker, “Model-based localization and recognition of road vehicles,” Int. J. Comput. Vision, vol. 29, no. 1, pp. 22-25, 1998.
[35]H. Yang, J. G. Lou, H. Z. Sun, W. M. Hu, and T. N. Tan, “Efficient and robust vehicle localization,” in Proc. International Conference on Image Processing, vol. 2,pp. 355-358, Oct 2001.
[36]H. Kollnig and H. Nagel, “3D pose estimation by directly matching polyhedral models to gray value gradients,” Int. J. Comput. Vision, vol. 23, no. 3, pp. 283-302, 1997.
[37]C. Rafael, and E. Richard, Digital Image Processing, 2/E, Prentice-Hall Inc, N. J. pp. 295-300, 2002.
[38]S. Avidan, “Support Vector Tracking,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp. 1064-1072, Aug. 2004.
[39]A. Bobick, S. Intille, J. Davis, F. Baird, C. Pinhanez, L. Campbell, Y. Ivanov, A. Schutte, and A. Wilson, “The kids room,” Comm. ACM, vol. 43, no. 3, 2000.
[40]C. Stauffer and E. Grimson, “Learning patterns of activity using real-time tracking,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747-757, Aug. 2000.
[41]D. Comaniciu and P. Meer, "Mean shift: a robust approach toward feature space analysis," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, May 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top