跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫錦虹
研究生(外文):Chin-Hung Sun
論文名稱:梨形鞭毛蟲ran基因啟動子之鑑定
論文名稱(外文):Identification of a ran Gene Promoter in the Primitive Protozoan Pathogen Giardia lamblia
指導教授:戴榮湘
指導教授(外文):Jung-Hsiang Tai
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:76
中文關鍵詞:梨形鞭毛蟲ran 基因啟動子持續 DNA 轉染系統可誘導基因表現系統
外文關鍵詞:Giardia lambliaran genepromoterstable DNA transfection systeminducible gene expression system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
梨形鞭毛蟲是一種寄生於腸道之原蟲,可引起流行性的腹瀉疾病,它也代表演化上極古老的真核生物,具有特殊且有趣的生物特性。為了解此原始生物的轉錄調控,此研究中我已針對其 ran 基因啟動子做分析。另外,我建立了兩套工具,持續 DNA 轉染系統,和可誘導之基因表現系統,以供研究梨形鞭毛蟲基因功能之用。
首先我著手建立梨形鞭毛蟲之持續 DNA 轉染系統,將對抗 neomycin 基因置於 ran 基因啟動子之調控下以構築出質體 pRANneo。此質體經電脈衝法轉染至細胞後,持續轉染細胞便可用 G418 篩選出來,而這些持續轉染細胞經測試後發現含有高分子數的游離 pRANneo 質體。我進一步將 gdh 基因啟動子所調控之螢火蟲發光基因插入 pRANneo 而構築出另一質體 pRANneo/GDHluc,經測試後發現此質體亦以游離方式維持於持續轉染細胞中,而 NEO 蛋白質和發光蛋白質二者皆在細胞中有高度的表現,且質體分子數與發光蛋白質表現量皆隨著篩選用之 G418 濃度增加而增加。此系統將是梨形鞭毛蟲研究領域中一個有用的工具,可用來研究某些有興趣的基因之功能。
其次我針對梨形鞭毛蟲 ran 基因啟動子做分析,發現 ran 基因之 5 端和 3 端未轉譯區域接於發光基因時,在短期轉染實驗可促使發光基因大量表現。進一步做刪除及突變分析時,發現位於 ran 基因 5 端未轉譯區域之 -51/-20 多 AT 區域為啟動子活性所必需之處。如插入此 32 鹼基對序列至無啟動子之發光基因前,可活化其表現,因此可知此序列作用如同啟動子,而當插入此序列之10 鹼基對短片段時,則只有較低表現。電泳位移實驗的結果,顯示此 32 鹼基對序列是以單股而非雙股形式來專一地結合某些細胞核蛋白質。用引子延伸法來研究時,發現此 32 鹼基對序列可決定轉錄起始點之位置。這些結果顯示此多 AT 之 32 鹼基對序列在梨形鞭毛蟲之轉錄調控方面扮演極重要的角色。
我第三個研究方向是建立梨形鞭毛蟲之可誘導基因表現系統,此目的在改善前述之持續 DNA 轉染系統,方法是將此系統與細菌之 tet 抑制子及操縱子系統合併。首先將 1 個,2 個,或 3 個 tet 操縱子插入 32 鹼基對 ran 啟動子區域之不同位置來調控發光基因的表現,並以梨形鞭毛蟲中不同的基因啟動子來調控 tet 操縱子的表現。然後這些重要的元素再進一步放入 pRANneo 以構築出不同的質體,並建立這些質體的持續轉染細胞。再進一步分析加入或不加入誘導子四環黴素時,比較發光蛋白質的活性表現,結果發現最佳的誘導效果是由某一質體達成,其含有 2 個 tet 操縱子於 ran 啟動子之下游及 a-giardin 啟動子所調控之 tet 抑制子基因。而發光蛋白質表現的誘導效果,視所加之四環黴素的量與作用時間而定,測試所得之最佳的誘導比率為 50,在加入 10 mg/ml 的四環黴素作用 10 小時可達成。此系統為一改良工具以供梨形鞭毛蟲之研究,可針對欲研究的基因調整其表現,因而可避免過量表現時所造成對細胞的毒害。
這些研究成果,奠定了未來研究轉錄機制的基礎,也提供了做分子研究的重要工具,對梨形鞭毛蟲的領域幫助很大。
Giardia lamblia is an enteric protozoan parasite causing infectious diarrheal diseases worldwide. It also represents an early-diverging eukaryote and exhibits an unusual and fascinating biology. To understand the transcriptional regulation in this primitive organism, I have characterized the promoter region of the ras-related nuclear protein (ran) gene of G. lamblia. In addition, two molecular tools, a stable DNA transfection system and an inducible gene expression system, have also been developed for studies of gene functions in G. lamblia.
I started the study by developing a stable DNA transfection system in G. lamblia. Plasmid pRANneo was constructed by placing a neomycin resistant gene under the control of the ran promoter. After transfection with this plasmid by electroporation, stable transfectants were established under G418 selection. The stable transfectants were found to contain episomal pRANneo molecules in high copy numbers. A luciferase gene directed by the glutamate dehydrogenase (gdh) promoter was inserted into pRANneo to generate another construct, pRANneo/GDHluc. Results showed that this plasmid was maintained episomally and the NEO and luciferase proteins were both highly expressed in the stable transfectants. The plasmid copy numbers and luciferase expression levels were both increased with increasing concentrations of G418. This system will be a useful tool for studying the specific effects of candidate genes in G. lamblia.
I then proceeded to characterize the G. lamblia ran gene promoter. The 5''- and 3''-untranslated regions (UTRs) of the ran gene were found to confer significant activity when linked to a luciferase reporter gene and transiently transfected into G. lamblia. Deletion and mutation analyses revealed that an AT-rich region spanning -51/-20 of the ran 5''-UTR gene was required for promoter activity. This 32-bp element was also sufficient for promoter function when placed upstream of a promoterless luciferase gene, and low levels of expression remained when it was dissected into 10-bp smaller fragments. Electrophoretic mobility shift assays showed that the 32-bp element bound specifically to nuclear proteins in single-stranded but not double-stranded configurations. Results from primer extension studies revealed that the 32-bp element was able to determine the transcription start sites. These data suggest that the 32-bp AT-rich region plays a major role in the transcriptional regulation of the ran gene in G. lamblia.
In order to improve the stable DNA transfection system, I have developed an inducible gene expression system by adapting the bacterial tet repressor-operator system into G. lamblia. One, two, or three tet operators were inserted into the 32-bp ran promoter context at various positions to drive the expression of luciferase reporter gene. Different G. lamblia promoters were also tested to drive the expression of the tet repressor gene. These regulatory elements were incorporated into the pRANneo stable transfection vector and the stable transfectants of the resulting constructs were established. By assaying the luciferase activity in the presence and absence of the inducer tetracycline, it was found that the best inducibility was mediated by the construct containing two tet operators downstream of the ran promoter and the tet repressor gene directed by the a-giardin promoter. The induction of luciferase expression was tetracycline dose- and time-dependent. The optimal induction ratio, ~50, was achieved after 10 hr upon addition of 10 mg/ml tetracycline. This system could be an improved tool for studies in G. lamblia since it allows adjustable expression of a target gene and thereby avoids the potential toxic effects of overexpression.
These studies may form a basis for future investigation of the transcriptional mechanisms and provide valuable tools for molecular studies in G. lamblia.
COVER
Contents
List of Tables
List of Figures
List of Abbreviations
Chinese Abstract
English Abstract
Introduction
G. lamblia is an Important Human Pathogen
G. lambliais an Ancient Eukaryote
Unique Features ofG. lamblia
Life Cycle ofG. lamblia
Objectives
Chapter I Development of a Stable DNA Transfection System
Abstract
Introduction
Materials and Methods
Results
Discussion
Chapter 2 Identification of & ran Gene Promoter
Abstract
Introduction
Materials and Methods
Results
Discussion
Chapter 3 Development of an Inducible Gene Expression System.
Abstract
Introduction
Materials and Methods
Results
Discussion
References
Appendixes
Adam RD, Nash TE, and Wellems TE. The Giardia lamblia trophozoite contains sets of closely related chromosomes. Nucleic Acids Res. 16: 4555-4567. 1988.
Adam RD. The biology of Giardia spp. Microbiol. Rev. 55: 706-732. 1991.
Alonso RA and Peattie DA. Nucleotide sequence of a second alpha giardin gene and molecular analysis of the alpha giardin genes and transcripts in Giardia lamblia. Mol Biochem Parasitol 50: 95-104. 1992.
Bertrand KP, Postle K, Wray LV, and Reznikoff WS. Construction of a single-copy promoter vector and its use in analysis of regulation of the transposon Tn10 tetracycline resistance determinant. J. Bacteriol. 158: 910-919. 1984.
Bingham AK and Meyer EA. Giardia excystation can be induced in vitro in acidic solutions. Nature. 277: 301-302. 1979.
Blackwood EM and Kadonaga JT. Going the distance: a current view of enhancer action. Science. 281: 61-63. 1998.
Blumenthal T. Gene clusters and polycistronic transcription in eukaryotes. Bioessays. 20: 480-487. 1998.
Boucher SM and Gillin FD. Excystation of in vitro-derived Giardia lamblia cysts. Infect. Immun. 58: 3516-3522. 1990.
Broothroyd JC, Wang A, Campbell DA, and Wang CC. An unusually compact ribosomal DNA repeat in the protozoan Giardia lamblia. Nucleic Acids Res. 15:4065-4084. 1987.
Brown SD and Van der Ploeg LH. Single-stranded DNA-protein binding in the procyclic acidic repetitive protein PARP promoter of Trypanosoma brucei. Mol. Biochem. Parasitol. 65: 109-122. 1994.
Bruderer T, Wehrli C, and Kohler P. Cloning and characterization of the gene encoding pyruvate phosphate dikinase from Giardia duodenalis. Mol. Biochem. Parasitol. 77: 255-233. 1996.
Chen LM, Chern Y, Ong SJ, and Tai JH. Molecular cloning and characterization of a ras-related gene of ran/tc4/spi1 sbufamily in Giardia lamblia. J. Biol. Chem. 269: 17297-17304. 1994.
Crabb BS and Cowman AF. Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA. 93: 7289-7294. 1996.
Delgadillpo MG, Liston DR, Niazi K, and Jonson PJ. Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA. 94: 4716-4720. 1997.
Dignam JD. Methods in Enzymology 182: 194-202. 1990.
Dingermann T, Werner H, Schutz A, Zundorf I, Nerke K, Knecht D, and Marschalek R. Establishment of a system for conditional gene expression using an inducible tRNA suppressor gene. Mol. Cell. Biol. 12: 4038-4045. 1992.
Donald RG and Roos DS. Homologous recombination and gene replacement at the dihydrofolate reductase-thymidylate synthase locus in Toxoplasma gondii. Mol. Biochem. Parasitol. 63: 243-253. 1994.
Ey PL, Khanna KK, Manning PA, and Mayrhofer G. A gene encoding a 69-kilodalton major surface protein of Giardia intestinalis trophozoites. Mol. Biol. Parasitol. 58: 247-258. 1993.
Faryar K and Gatz C. Construction of a tetracycline-inducible promoter in Schizosaccharomyces pombe. Curr. Genet. 21: 345-349. 1992.
Furfine ES and Wang CC. Transfection of Giardia lamblia double-stranded RNA virus into Giardia lamblia by electroporation of a single-stranded RNA copy of the viral genome. Mol. Cell Biol. 10: 3659-3663. 1990.
Gatz C and Quail PH. Tn10-encoded tet repressor can regulate an operator-containing plant promoter. Proc. Natl. Acad. Sci. USA. 85: 1394-1397. 1988.
Gatz C, Frohberg C, and Wendenburg R. Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant. J. 2: 397-404. 1992.
Gillin FD and Reiner DS. Attachment of the flagellate Giardia lamblia: role of reducing agents, serum, temperature, and ionic composition. Mol. Cell. Biol. 2: 369-377. 1982.
Gillin FD and Reiner DS. Cell biology of the primitive eukaryote Giardia lamblia. Annu. Rev. Microbiol. 50: 679-705. 1996.
Gillin FD, Reiner DS, Gault MJ, Douglas H, Das S, Wunderlich A, and Sauch JF. Encystation and expression of cyst antigens by Giardia lamblia in vitro. Science 235: 1040-1043. 1987.
Gossen M and Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA. 89: 5547-5551. 1992.
Gossen M, Bonin AL, and Bujard H. Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends. Biochem. Sci. 18: 471-475. 1993.
Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, and Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science. 268: 1766-1769. 1995.
Hamann L, Bub H, and Tannich E. Tetracycline-controlled gene expression in Entamoeba histolytica. Mol. Biochem. Parasitol. 84: 83-91. 1997.
Hamann L, Nickel R, and Tannich E. Transfection and continuous expression of heterologous genes in the protozoan parasite Entamoeba histolytica. Proc. Natl. Acad. Sci. USA. 92: 8975-7979. 1995.
Hampsey M. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev. 62: 465-503. 1998.
Hashimoto T, Nakamura Y, Kamaishi T, Nakamura F, Adachi J, Okamoto K, and Hasegawa M. Phylogenetic place of mitochondrion-lacking protozoan, Giardia lamblia, inferred from amino acid sequences of elongation factor 2. Mol. Biol. Evol. 12: 782-793. 1995.
Healey A, Mitchell R, Upcroft JA, Boreham PFL, and Upcroft P. Complete nucleotide sequence of the ribosomal RNA tandem repeat unit from Giardia intestinalis. Nucleic Acids Res. 18: 4006. 1990.
Hilario E and Gogarten JP. The V-ATPase A subunit gene vma-1. from Giardia lamblia. Biochim. Biophys. Acta. 1238: 94-98. 1995.
Hillen W and Berens C. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu. Rev. Microbiol. 48: 345-369. 1994.
Hirt B. Selective extraction of polyma DNA from infected mouse cell cultures. J. Mol. Biol. 26: 365-369. 1967.
Holberton DV and Marshall J. Analysis of consensus sequence patterns in Giardia cytoskeleton gene promoters. Nucleic. Acids. Res. 23: 2945-2953. 1995.
Hou G, Le Blancq SM, E Y, Zhu H, and Lee MGS. Structure of a frequently rearranged rRNA-encoding chromosome in Giardia lamblia. Nucleic Acids Res. 23: 3310-3317. 1995.
Hoyne GF, Boreham PF, Parsons PG, Ward C, and Biggs B. The effect of drugs on the cell cycle of Giardia intestinalis. Parasitology. 99: 333-339. 1989.
Kabnick KS and Peattie DA. In situ analyses reveal that the two nuclei of Giardia lamblia are equivalent. J. Cell Sci. 95: 353-360. 1990.
Kane AV, Ward HD, Keush GT, and Pereira MEA. In vitro encystation of Giardia lamblia: large-scale production of in vitro cysts and strain and clone differences in encystation efficiency. J. parasitol. 77:974-981. 1991.
Kapler MG, Coburn CM, Beverley SM. Stable transfection of the human parasite Leishmanai major delineates a 30-kilobase region sufficient for extrachomosomal replication and expression. Mol. Cell Biol. 10: 1084-1094. 1990.
Katiyar SK, Visvesvara GS, and Edlind TD. Comparisons of ribosomal RNA sequences from amitochondrial protozoa: implications for processing, mRNA binding and paromomycin susceptibility. Gene. 152: 27-33. 1995.
Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans. R. Soc. Trop. Med. Hyg. 77: 487-488. 1983.
Kim HJ, Gatz C, Hillen W, and Jones TR. Tetracycline repressor-regulated gene repression in recombinant human cytomegalovirus. J. Virol. 69: 2565-2573. 1995.
Kirk Mason KE, Turner MJ, and Chakraborty PR. Evidence for unusually short tubulin mRNA leaders and characterization of tubulin genes in Giardia lamblia. Mol Biochem Parasitol 36: 87-100. 1989.
Knodler LA, Sekyere EO, Stewart TS, Schofield PJ, and Edwards MR. Cloning and expression of a prokaryotic enzyme, arginine deiminase, from a primitive eukaryote Giardia intestinalis. J. Biol. Chem. 273: 4470-4477. 1998.
Kozak M. Influence of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA. 83: 2850-2854. 1986.
Kucherlapati R and Skoultchi AI. Introduction of purified genes into mammalian cells. CRC. Crit. Rev. Biochem. 16: 349-379. 1984.
Lanzer M and Bujard H. Promoter largely determine the efficiency of repressor action. Proc. Natl. Acad. Sci. USA. 85: 8973-8977. 1988.
Lee MGS and Van der Ploeg LHT. Homologous recombination and stable transfection in the parasitic protozoan Trypanosoma brucei. Science. 250: 1583-1587. 1990.
Lin S and Riggs AD. The general affinity of lac repressor for E. coli DNA: implications for gene regulation in procaryotes and eucaryotes. Cell. 4: 107-111. 1975.
Lindmark DG. Energy metabolism of the anaerobic protozoon Giardia lamblia. Mol. Biochem. Parasitol. 1: 1-12. 1980.
Liston DR and Johnson PJ. Analysis of a ubiquitous promoter element in a primitive eukaryote: early evolution of the initiator element. Mol. Cell Biol. 19: 2380-2388. 1999.
Lujan HD, Mowatt MR, and Nash TE. Mechanism of Giardia lamblia differentiation into cysts. Microb. Mol. Rev. 61: 294-304. 1997.
Lujan HD, Mowatt MR, Conrad JT, Bowers B, and Nash TE. Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J. Biol. Chem. 270: 29307-29313. 1995.
MacDonald GH, Itoh, Lindstrom Y, and Ting JP. The transcriptional regulatory protein, YB-1, promotes single-stranded regions in the DRA promoter. J. Biol. Chem. 270: 3527-3533. 1995.
Macechko PT, Steimle PA, Lindmark DG, Erlandsen SL, and Jarroll EL. Galactosamine-synthesizing enzymes are induced when Giardia encyst. Mol. Biochem. Parasitol. 56: 301-309. 1992.
McCaffery JM, Faubert GM, and Gillin FD. Giardia lamblia: traffic of a trophozoite variant surface protein and a major cyst wall epitope during growth, encystation, and antigenic switching. Exp. Parasitol. 79: 236-249. 1994.
McClure WR. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54: 171-204. 1985.
Michelotti EF, Tomonaga T, Krutzsch H, and Levens D. Cellular nucleic acid binding protein regulates the CT element of the human c-myc protooncogene. J. Biol. Chem. 270: 9494-9499. 1995.
Miller RL, Wang AL, and Wang CC. Purification and characterization of the Giardia lamblia double-stranded RNA virus. Mol. Biochem. Parasitol. 28: 189-196. 1988.
Mowatt MR, Lujan HD, Cotton DB, Bower B, Yee J, Nash TE, and Stibbs HH. Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol. Microb. 15: 955-963. 1995.
Mowatt MR, Weinbach EC, Howard TC, and Nash TE. Complementation of an Escherichia coli glycolysis mutant by Giardia lamblia triosephosphate isomerase. Exp. Parasitol. 78: 85-92. 1994.
Murtagh JJ, Mowatt MR, Lee CM, Lee FJS, Mishima K, Nash TE, Moss J, and Vaughan M. Guanine nucleotide-binding proteins in the intestinal parasite Giardia lamblia. Isolation of a gene encoding an approximately 20-kDa ADP-ribosylation factor. J. Biol. Chem. 267: 9654-9662. 1992.
Narcisi EM, Glover CV, and Fechheimer M. Fibrillarin, a conserved pre-ribosomal RNA processing protein of Giardia. J. Eukaryot. Microbiol. 45: 105-111. 1998.
Nash TE. Surface antigen variability and variation in Giardia lamblia. Parasitol. Today. 8: 229-234. 1992.
Nohria A, Alonso RA, and Peattie DA. Identification and characterization of gamma-giardin and the gamma-giardin gene from Giardia lamblia. Mol. Biochem. Parasitol. 56: 27-28. 1992.
Papadopoulou B, Roy G, and Quellette M. Autonomous replication of bacterial DNA plasmid oligomers in Leishmania. Mol. Biochem. Parasitol. 65: 39-49. 1994.
Patnaik PK, Fang X, and Cross GAM. The region encompassing the procyclic acidic repetitive protein PARP. gene promoter plays a role in plasmid DNA replication in Trypanosoma brucei. Nucleic Acids Res. 20: 4111-4118. 1994.
Patnaik PK, Kulkarni K, and Cross GAM. Autonomously replicating single-copy episomes in Trypanosoma brucei show unusual stability. EMBO J. 12: 2529-2538. 1993.
Pugh BF. Mechanisms of transcription complex assembly. Curr. Opin. Cell. Biol. 8: 303-311. 1996.
Purdy JE, Pho LT, Mann BJ, and Petri WAJ. Upstream regulatory elements controlling expression of the Entamoeba histolytica lectin. Mol. Biochem. Parasitol. 78: 91-103. 1995.
Que X, Svard SG, Meng TC, Hetsko ML, Aley SB, and Gillin FD. Developmentally regulated transcripts and evidence of differential mRNA processing in Giardia lamblia. Mol. Biochem. Parasitol. 81: 101-110. 1996.
Ramakrishnan G, Vines RR, Mann BJ, and Petri WA. A tetracycline-inducible gene expression system in Entamoeba histolytica. Mol. Biochem. Parasitol. 84: 93-100. 1997.
Reiner D S, McCaffery M, and Gillin FD. Sorting of cyst wall proteins to a regulated secretory pathway during differentiation of the primitive eukaryote, Giardia lamblia. Eur. J. Cell Biol. 53: 142-153. 1990.
Reiner DS, Douglas H, Gillin FD. Identification and localization of cyst-specific antigens of Giardia lamblia. Infect. Immun. 57: 963-968. 1989.
Roger AJ, Svard SG, Tovar J, Clark CG, Smith MW, Gillin FD, and Sogin ML. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc. Natl. Acad. Sci. USA 95: 229-234. 1998.
Rozario C, Smith MW, and Muller M. Primary sequence of a putative pyrophosphate-linked phosphofructokinase gene of Giardia lamblia. Biochem. Biophys. Acta 1260: 218-222. 1995.
Sambrook J, Fritsch EF, and Maniatis T. Molecular cloning, a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory press. 1989.
Sherman DR, Janz L, Hug M, and Clayton C. Anatomy of the parp gene promoter of Trypanosoma brucei. EMBO J. 10: 3379-3386. 1991.
Singer SM, Yee J, and Nash TE. Episomal and integrated maintenance of foreign DNA in Giardia lamblia. Mol. Biochem. Parasitol. 92: 59-69. 1998.
Singh U, Roger JB, Mann BJ, and Petri WAJ. Transcription initiaiton is controlled by three core promoter elements in the hgl5 gene of the protozoan parasite Entamoeba histolytica. Proc. Natl. Acad. Sci. USA. 94: 8812-8817. 1997.
Smale ST and Baltimore D. The "initiator" as a transcription control element. Cell 57: 103-113. 1989.
Smith MW, Aley SB, Sogin M, Gillin FD, and Evans GA. Sequence survey of the Giardia lamblia genome. Mol. Biochem. Parasitol. 95: 267-280. 1998.
Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, and Peattie DA. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243: 75-77. 1989.
Sogin web site: evol2.mbl.edu.
Soldati D and Boothroyd JC. Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science. 260: 349-352. 1993.
Soldati D and Broothroyd JC. A selector of transcription initiation in the protozoan parasite Toxoplasma gondii. Mol. Cell Biol. 15: 87-93. 1995.
Sun CH, Chou CF, and Tai JH. Stable DNA transfection of the primitive protozoan pathogen Giardia lamblia. Mol Biochem. Parasitol. 92: 123-132. 1998.
Swamynathan SK, Nambiar A, and Guntaka RV. Role of single-stranded DNA regions and Y-box proteins in transcriptional regulation of viral and cellular genes. FASEB J. 12: 515-522. 1998.
Thomm M. Archaeal transcription factors and their role in transcription initiation. FEMS. Microbiol. Rev. 18: 159-171. 1996.
Tomonaga T and Levens D. Activating transcription from single stranded DNA. Proc. Natl. Acad. Sci. USA 93: 5830-5835. 1996.
Tomonaga T and Levens D. Heterogeneous nuclear ribonucleoprotein K is a DNA-binding transactivator. J. Biol. Chem. 270: 4875-4881. 1995.
Upcroft J and Upcroft P My favorite cell: Giardia. Bioessays. 20: 256-2631998.
Van Dijk MR, Waters AP, and Janse CJ. Stable transfection of malaria parasite blood stages. Science. 268: 1358. 1995.
Vanhamme L, pays A, tebabi P, Alexandre S, and Pays E. Specific binding of proteins to the noncoding strand of a crucial element of the variant surface glycoprotein, procyclin, and ribosomal promoters of Trypanosoma brucei. Mol. Cell. Biol. 15: 5598-5606. 1995.
Verrijzer CP and Tjian R. TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem. Sci. 21: 338-341. 1996.
Walder JA, Eder PS, Engman DM, Brentano ST, Walder RY, Knutzon DS, Dorfman DM, and Donelson JE. The 35-nucleotide spliced leader sequence is common to all trypanosome messenger RNA''s. Science 233: 569-571. 1986.
Ward W, Alvarado L, Rawlings ND, Engle JC, Franklin C, McKerrow JH. A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell. 89: 437-444. 1997.
Wasylyk B. Transcription elements and factors of RNA polymerase B promoters of higher eukaryotes. CRC Crit. Rev. Biochem. 23: 77-120. 1988.
White RJ and Jackson SP. The TATA-binding protein: a central role in transcription by RNA polymerases I, II and III. Trends Genet. 8: 284-288. 1992.
Wirtz E and Clayton C. Inducible gene expression in Trypanosomes mediated by a prokaryotic repressor. Science 268: 1179-1182. 1995.
Wold MS. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66: 61-92. 1997.
Wolfe MS. Giardiasis. Clin. Microbiol. Rev. 5: 93-100. 1992.
Yee J and Dennis PP. Isolation and characterization of a NADP-dependent glutamate dehydrogenase gene from the primitive eucaryote Giardia lamblia. J. Biol. Chem. 267: 7539-7554. 1992.
Yee J and Nash TE. Transient transfection and expression of firefly luciferase in Giardia lamblia. Proc. Natl. Acad. Sci. USA. 92: 5615-5619. 1995.
Yu DC and Wang CC. Identification of cis-acting signals in the giardiavirus GLV. genome required for expression of firefly luciferase in Giardia lamblia. RNA 2: 824-834. 1996.
Yu DC, Wang AL, and Wang CC. Stable coexpression of a drug-resistance gene and a heterologous gene in an ancient parasitic protozoan Giardia lamblia. Mol. Biochem. Parasitol. 83: 81-89. 1996.
Yu DC, Wang AL, Botka CW, and Wang CC. Protein synthesis in Giardia lamblia may involve interaction between a downstream box DB in mRNA and an anti-DB in the 16S-like ribosomal RNA. Mol. Biochem. Parasitol. 96: 151-165. 1998.
Yu DC, Wang AL, Wu CH, and Wang CC. Virus-mediated expression of firefly luciferase in the parasitic protozoan Giardia lamblia. Mol. Cell. Biol. 15: 4867-4872. 1995.
Zawel L and Reinberg D. Common themes in assembly and function of eukaryotic transcription complex. Annu. Rev. Biochem. 64: 533-561. 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top