跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.121) 您好!臺灣時間:2025/12/12 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭舜竹
研究生(外文):Shun-Chu Cheng
論文名稱:製備 L-prolinamide 官能基化 SBA-15 的異相鏡像催化劑及其在醛酮間 Aldol 加成反應的應用
論文名稱(外文):SBA-15 supported L-prolinamide as a heterogeneous enantioselective catalyst in aldol reaction between ketone and aldehyde
指導教授:鄭淑芬鄭淑芬引用關係
指導教授(外文):Soofin Cheng
口試委員:邱靜雯蔡蘊明
口試委員(外文):Ching-Wen ChiuYeun-Min Tsai
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:90
中文關鍵詞:SBA-15介孔脯氨&;#37232;胺aldol 反應
外文關鍵詞:SBA-15mesoporousprolinamidealdol reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一系列以不同碳鏈長度連結固定於 SBA-15 介孔材料之L-prolinamide觸媒經由 thiol-ene 反應合成出來,這些觸媒的化學物理性質經由 XRD、N2吸脫附曲線、IR光譜 以及固態 NMR 等技術做鑑定。這些掌性選擇觸媒在催化反應後可經過簡單的過濾與產物分離並重複使用。
所製備的固定於 SBA-15 介孔材料之L-prolinamide觸媒可以在溫和的條件中催化環己烷與對硝基甲醛之間不對稱的 Aldol 加成反應,數個影響催化表現的因素被探討,包括溶劑的種類、當作溶劑的水量、催化劑的量、L-prolinamide 與 SBA-15 之間的碳鏈長度,反應時間和溫度。結果顯示碳鏈愈長,能達到愈高的選擇率,以八碳鏈長連接於SBA-15的L-prolinamide觸媒轉化率可達 66%,選擇率大於 99%,反應時間由 24 小時延長至 48 小時候,轉化率可提高至 76%,且選擇率依然維持於 99%,此外觸媒可重複使用至少三次以上,而催化效果皆不改變。


A series of SBA-15 materials with different legnths of linker immobilized L-prolinamide catalysts were prepared by thiol-ene reaction. The materials were characterized with XRD, N2 sorption isotherm, IR spectroscopy and solid-state NMR techniques. These catalysts with chiral centers could be reused by simple filtration to separate from the products.
The SBA-15 anchored L-prolinamide could catalyze asymmetric Aldol reaction between cyclohexanone with 4-nitrobenzaldehyde under mild condition. Factors which might affect the catalytic performance including the type of solvents, the amount of water as solvent, the amount of catalysts, the linker length between L-prolinamide and SBA-15, the reaction time and temperature. The results showed that higher enentioselectivity could be reached over the catalysts with longer linker. The catalyst containing octyl chain between SBA-15 and L-prolinamide gave 66% of conversion, and greater than 99% of enantioselectivity. The conversion could be increased to 76% and the the enantioselectivity was still unchanged when the reaction was prolonged from 24 h to 48 h. These catalysts could be reused at least three times retaining the same activities.


謝誌 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 不對稱化合物合成的重要性 1
1-2 有機催化劑與不對稱 Aldol 加成反應的介紹 3
1-3 Proline 衍生物作為反應催化劑 5
1-4 孔洞材料的介紹 8
1-5 介孔材料的表面修飾 12
1-5-1 嫁接法 12
1-5-2 共縮合法 13
1-5-3 週期性介孔有機矽材 14
1-6 Thiol-ene 自由基加成反應 16
1-7 同相觸媒異相化 18
1-8 以水替代溶劑作催化反應 23
1-9 研究目的 25
第二章 實驗方法 26
2-1 化學藥品 26
2-2 具對掌性有機試劑的製備 28
2-2-1 合成(2S,4R)-1-tert-butyl2-methyl4-hydroxypyrrolidine 1,2- dicarboxylate (1) 28
2-2-2 合成 (2S,4R)-1-tert-butyl 2-methyl4-((methylsulfonyl)oxy)pyrrolidine- 1,2- dicarboxylate (2) 29
2-2-3 合成(2S,4S)-1-tert-butyl 2-methyl4-(acetylthio)pyrrolidine 1,2-dicarboxylate(3) 30
2-2-4 合成 (2S,4S)-1-(tert-butoxycarbonyl)-4-mercaptopyrrolidine- 2-carboxylic acid (4) 31
2-2-5 合成 (2S,4S)-tert-butyl 4-mercapto-2-((4-nitrophenyl)carbamoyl) pyrrolidine-1-carboxylate (5) 31
2-2-6 合成 (2S,4S)-tert-butyl 4-mercapto-2-((4-methoxyphenyl)carbamoyl) pyrrolidine-1-carboxylate (6) 32
2-3 孔洞材料的製備 33
2-3-1 含乙烯基的扁平狀 SBA-15 合成 33
2-3-2 含乙烯基的棒狀 SBA-15 合成 33
2-4 將含硫醇基之 L-prolinamide 嫁接於含乙烯基之 SBA-15 中 35
2-5 催化反應 36
2-6 鑑定材料之儀器與方法 37
2-6-1 X-光粉末繞射 (Powder X-ray Diffraction, XRD) 37
2-6-2氮氣吸附–脫附等溫曲線 (N2 Adsorption-desorption Isotherm) 37
2-6-3 元素分析(Elemental Analysis, EA) 40
2-6-4 液態核磁共振光譜 (Nuclear Magnetic Resonance, NMR) 40
2-6-5 固態核磁共振光譜(Solid-State Nuclear Magnetic Resonance, NMR) 40
2-6-6 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 40
2-6-7 X 光近緣吸收光譜 (X-ray near edge spectrum, XANES) 40
2-6-8 高效液相層析 (High Performance Liquid Chromatography, HPLC) 41
第三章 結果與討論 42
3-1 有機物之合成與鑑定 42
3-2 不同 prolinamide 含量之扁平狀 SBA15 49
3-2-1 催化反應 59
3-3 扁平狀與棒狀 SBA-15 之比較 61
3-3-1 催化反應 64
3-4 推拉電子基對於催化反應的影響 65
3-4-1 催化反應 67
3-5 催化劑量與水量對於 v-Zr-SBA15-15%-cat 的影響 69
3-6 加長矽材與 prolinamide 之間長度對催化反應的影響 71
3-6-1 催化反應 77
3-7 不同反應條件對於 o-Zr-SBA-15-15%-cat 的影響 79
3-8 觸媒回收再利用 83
3-9 勻相催化 87
第四章 結論 88
第五章 參考文獻 89

[1] J. McMurry. Organic Chemistry. 7. Belmont, CA: David Harris, 2008.
[2] 趙晉陞,陳蓉萱,許華麟,蔡惠如,陳焜銘, The Chinese Chem. Soc., Taipei , 2004, 62, 239.
[3] S. J. Peng Wang, Donghui Liu, Weili Shan, Hongjun Zhang, and Zhiquiang Zhou, J. Chromatogr. Sci., 2006, 44, 602.
[4] A. M. Escorcia, D. Molina, M. C. Daza, M. Doerr, J. Mol. Catal. B: Enzym. 2013, 98, 21.
[5] M. Raj, V. K. Singh, Chem Commun., 2009, 6687.
[6] A. Monge-Marcet, X. Catto&;euml;n, D. A. Alonso, C. N&;aacute;jera, M. W. C. Man, R. Pleixats, Green Chem., 2012, 14, 1601.
[7] A. Ba&;ntilde;&;oacute;n-Caballero, G. Guillena, C. N&;aacute;jera, E. Faggi, R. M. Sebasti&;aacute;n, A. Vallribera, Tetrahedron, 2013, 69, 1307.
[8] L. G. Wade. Organic Chemistry. Upper Saddle River, New Jersey : Prentice Hall. 6. 2005.
[9] B. List, R. A. Lerner, C. F. Barbas, J. Am. Chem. Soc., 2000, 122, 2395.
[10] W. N. K. Sakthivel, T. Bui, C. F. Barbas III, J. Am. Chem. Soc., 2001, 123, 5260.
[11] J. R. Chen, H. H. Lu, X. Y. Li, L. Cheng, J. Wan, W. J. Xiao, Org. Lett., 2005, 7, 4543.
[12] Z. Tang, F. Jiang, X. Cui, L. Z. Gong, A. Q. Mi, Y. Z. Jiang, Y. D. Wu, PNAS, 2004, 101, 5755.
[13] A. J. Cobb, D. M. Shaw, D. A. Longbottom, J. B. Gold, S. V. Ley, Org. Biomol. Chem., 2005, 3, 84.
[14] B. Wang, G. H. Chen, L. Y. Liu, W. X. Chang, J. Li, Adv. Synth. Catal., 2009, 351, 2441.
[15] J. N. Moorthy, S. Saha, Eur. J. Org. Chem., 2008, 739.
[16] J. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed. 1999, 38, 56.
[17] C. T. Kresge, M. E. Leonowicz, W. J. Roth, L. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
[18] J. C. Vartuli, K. D. Schmitt, C. T. Kresge, W. J. Roth, M. E. Leonowicz, S. B. McCullen, S. D. Hellring, J. S. Beck, J. L. Schlenker, D. H. Olsen, E. W. Sheppard, Chem. Mater. 1994, 6, 2317.
[19] D. Y. Zhao, J. L. Feng, Q.S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
[20] D. Y. Zhao, Q. S. Huo, J. G. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024.
[21] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed., 2006, 45, 3216.
[22] P. M. Price, J. H. Clark, D. J. Macquarrie, J. Chem. Soc., Dalton Trans., 2000, 101.
[23] A. P. Wight, M. E. Davis, Chem. Rev., 2002, 102, 3589.
[24] C. E. Hoyle, T. Y. Lee, T. Roper, J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 5301.
[25] A. Zamboulis, N. Moitra, J. J. E. Moreau, X. Catto&;euml;n, M. W. C. Man, J. Mater. Chem., 2010, 20, 9322.
[26] M. Gruttadauria, F. Giacalone, R. Noto, Chem. Soc. Rev., 2008, 37, 1666.
[27] F. Cozzi, Adv. Synth. Catal., 2006, 348, 1367.
[28] M. Benaglia, New J. Chem., 2006, 30, 1525.
[29] A. Corma, H. Garcia, Adv. Synth. Catal., 2006, 348, 1391.
[30] H. Y. Kim, S. Kim, K. Oh, Angew. Chem. Int. Ed., 2010, 49, 4476.
[31] D. Dhar, I. Beadham, S. Chandrasekaran, Proc. Indian Acad. Sci.(Chem. Sci.), 2003, 115, 365.
[32] P. Kotrusz, I. Kmentov, B. Gotov, T. Toma, E. Solcaniov, Chem. Commun., 2002, 2510.
[33] U. M. Lindstrom, Chem. Rev., 2001, 102, 2751.
[34] A. I. Nyberg, A. Usano, P. M. Pihko, Synlett, 2004, 11, 1891.
[35] Xuan Zhang, Wenshan Zhao, Lili Yang, Y. Cui, J. Appl. Polym. Sci., 2013, 3537.
[36] 楊嘉銘, 國立台灣大學化學碩士論文, 2010.
[37] 簡婕, 國立台灣大學化學碩士論文, 2012.
[38] N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka, C. F. Barbas III, J. Am. Chem. Soc. 2006, 128, 734.
[39] K. Griesbaum, Angew. Chem., Int. Ed. 1970, 9, 273.
[40] L. Y. Liu, B. Wang, Y. Zhu, W. X. Chang, J. Li, Tetrahedron: Asymmetry 2013, 24, 533.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊