|
[1] C. S. Lin, “Design of low-power fully parallel content adressable memories,” Ph.D. dissertation, National Cheng Kung University, Tainan, Taiwan, June 2004. [2] T. Jamil, “RAM versus CAM,” IEEE Potentials, vol. 16, pp. 26-29, Apr.-May, 1997. [3] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits and architectures: a tutorial and survey,” IEEE J. Solid-State Circuits, vol. 41, pp. 712-727, Mar. 2006. [4] K. J. Schultz, “Content-addressable memory core cells: A survey,” Integration: the VLSI J., vol. 23, pp. 171-188, Nov. 1997. [5] A. Efthymiou and J. D. Garside, “A CAM with mixed serial-parallel comparison for use in low energy caches,” IEEE Trans. VLSI Syst., vol. 12, pp. 325-329, Mar. 2004. [6] T. Ikenaga and T. Ogura, “A fully-parallel 1 Mb CAM LSI for real-time pixel-parallel image processing,” IEEE J. Solid-State Circuits, vol. 35, pp. 536-544, Apr. 2000. [7] K. J. Lin, C. W. Wu, and S. Member, “A low-power CAM design for LZ data compression,” IEEE Trans. Comput., vol. 49, pp. 1139-1145, Oct. 2000. [8] H. Miyatake, M. Tanaka, and Y. Mori, “A design for high-speed low-power CMOS fully parallel content-addressable memory macros,” IEEE J. Solid-State Circuits, vol. 36, pp. 956-968, June 2001. [9] M. Sumita, “A 800 MHz single cycle access 32 entry fully associative TLB with a 240 ps access match circuit,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2001, pp. 231-232. [10] J. H. Lee, G. H. Park, S. B. Park, and S. D. Kim, “A selective filter-bank TLB system [embedded processor MMU for low power],” in Proc. Int. Symp. Low-Power Electron. Design, Aug. 2003, pp. 312-317. [11] Z. Liang, J. Wu, and K. Xu, “A TCAM-based IP lookup scheme for multi-nexthop routing,” in Proc. IEEE Int. Conf. Comp. Networks Mob. Comput., Oct. 2003, pp. 128-135. [12] F. Zane, N. Girija, and A. Basu, “Coolcams: power-efficient TCAMs for forwarding engines,” in Proc. IEEE INFOCOM, Mar. 2003, pp. 42-52. [13] T. Matsuda and K. Matsuda, “A new protocol processing architecture for high-speed networks,” in Proc. IEEE Global Telecommun. Conf., Nov. 1996, pp. 798-803. [14] S. V. Kartalopoulos, “Associative RAM-based CAM applicable to packet-based broadband systems,” in Proc. IEEE Global Telecommun. Conf., Nov. 1998, pp. 2888-2891. [15] K. J. Schultz and P. G. Gulak, “CAM-based single-chip shared buffer ATM switch,” in Proc. IEEE Int. Conf. Commun., May 1994, pp. 1190-1195. [16] C. S. Lin and B. D. Liu, “Design of a shared buffer management scheme for ATM switches,” in Proc. 15th Annual IEEE Int. ASIC/SOC, Sept. 2002, pp. 261-264. [17] S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design. New York : McGraw-Hill, 1996. [18] F. J. Kurdahi, “Dynamic CMOS Circuits,” Introduction to VLSI Design, University of California, Irvine, ECE151, Fall 1995. Available: http://www.eng.uci.edu/ece/ece151/lec4/dynamic.html [19] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design. Reading, MA : Addison-Wesley, 2001. [20] K. J. Schultz, F. Shafai, G. F. R. Gibson, A. G. Bluschke, and D. E. Somppi, “Fully parallel 25 MHz, 2.5-Mb CAM,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1998, pp. 332-333. [21] M. Ito, K. Kawasaki, N. Yoshikawa, A. Fujimaki, H. Terai, and S. Yorozu, “20 GHz operation of bit-serial handshaking systems using asynchronous SFQ logic circuits,” IEEE Trans. App. Superconduct., vol. 15, pp. 255-258, June. 2005. [22] E. Macii and M. Poncino, “Power consumption of static and dynamic CMOS circuits: a comparative study,” in Proc. IEEE 2nd Int. Conf. ASIC, Oct.1996, pp. 425-427. [23] C. Terman, “Precharge/Evaluate Logic,” Introduction of VLSI Systems, Massachusetts Institute of Technology, Class 6.371, Fall 1996. Available: http://cerberus.lcs.mit.edu/6.371/lectures/L9/ [24] C. H. Kim, J. J. Kim, S. Mukhopadhyay, and K. Roy, “A forward body-biased low-leakage SRAM cache: device, circuit and architecture considerations,” in Proc. Int. Symp. Low-Power Electron. Design, Aug. 2003, pp. 6-9. [25] J. F. Wakerly, Digital Design: Principles and Practices. Eaglewood Cliffs, NJ : Prentice-Hall, 2001. [26] E. Brunvand, S. Nowick and K. Yun, “Practical advances in asynchronous design,” in Proc. IEEE Comp. Design. Conf., Oct. 1997, pp. 662-668 [27] Yuan, J. and C. Svensson, “New single-clock CMOS latches and flipflops with improved speed and power savings,” IEEE J. Solid-State Circuits, vol. 32, pp. 62-69, Jan. 1997. [28] S. V. Kartalopoulos, “An associative RAM-based CAM and its application to broad-band communications systems,” IEEE Trans. Neural Networks, vol. 9, pp. 1036-1041, Sept. 1998. [29] G. Thirugnanam, N. Vijaykrishnan, and M. J. Irwin, “A novel low power CAM designs,” in Proc. IEEE Int. ASIC/SOC Conf., Sept. 2001, pp. 198-202. [30] S. Liu, F. Wu, and J. B. Kuo, “A novel low-voltage content-addressable memory (CAM) cell with a fast tag-compare capability using partially depleted (PD) SOI CMOS dynamic-threshold (DTMOS) techniques,” IEEE J. Solid-State Circuits, vol. 36, pp. 712-716, Apr. 2001. [31] V. Chaudhary and L. T. Clark, “Low-power high-performance nand match line content addressable memories,” IEEE Trans. VLSI Syst., vol. 14, pp. 895-905, Aug. 2006. [32] C. S. Lin, K. H. Chen, and B. D. Liu, “Low-power and low-voltage fully parallel content-addressable memory,” in Proc. IEEE Int. Symp. Circuits Syst., May 2003, pp. 373-376. [33] C. S. Lin, J. C. Chang, and B. D. Liu, “A low-power precomputation-based fully parallel content-addressable memory,” IEEE J. Solid-State Circuits, vol. 38, pp. 654-662, Apr. 2003. [34] I. Hong, D. Kirovski, G. Qu, M. Otkonjak and M. B. Srivasta, “Power optimization of variable voltage core-based systems,” in Proc. ACM/IEEE Design Autom. Conf., June 1998, pp. 176-181. [35] J. M. Rabaey, M. Pedram, Low Power Design Methodologies. Boston, MA : Kluwer Academic, 1996. [36] Y. J. Chang, Y. H. Liao and S. J. Ruan, “Improve CAM power efficiency using decoupled match line scheme,” in Proc. Eur. Conf. Design Automat., Apr. 2007, pp. 1-6. [37] V. Lines, A. Ahmed, P. Ma, R. M. Kenzie, H. S. Kim and C. Mar, “66 MHz 2.3 M ternary dynamic content addressable memory,” in Proc. IEEE Int. Workshop Memory Tech., Des. Test, Aug. 2000, pp. 101-105. [38] H. Noda, K. Inoue, H. J. Mattausch, T. Koide, and K. Arimoto, “A cost-efficient dynamic ternary CAM in 130 nm CMOS technology with planar complementary capacitors and TSR architecture,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp. 83-84. [39] H. Noda, K. Inoue, M. Kuroiwa, A. Amo, A. Hachisuka, H. J. Mattausch, T. Koide, S. Soeda, K. Dosaka and K. Arinnoto, “A 143 MHz 1.1 W 4.5 Mb dynamic TCAM with hierarchical searching and shift redundancy architecture,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2004, pp. 208-209. [40] K. Pagiamtzis and A. Sheikholeslami, “Pipelined match-lines and hierarchical search-lines for low-power content-addressable memories,” in Proc. IEEE Cust. Int. Circuits Conf, Sept. 2003, pp. 383-386 [41] G. Kasai, Y. Takarabe, K. Furumi, and M. Yoneda, “200 MHz/200 MSPS 3.2 W at 1.5 V Vdd, 9.4 Mbits ternary CAM with new charge injection match detect circuits and bank selection scheme,” in Proc. IEEE Cust. Int. Circuits Conf, Sept. 2003, pp. 387-390. [42] K. H. Cheng, C. H. Wei, and S. Y. Jiang, “Static divided word matchline line for low-power content addressable memory design,” in Proc. IEEE Int. Symp. Circuits Syst., May 2004, pp. 629-632. [43] J. Zhang, Y. Ye and B. D. Liu, “A Low-power technique based on charge injection and current-saving methods for match-line sensing in content-addressable memories,” in Proc. Asia-Paccific Conf. Circuits Syst., Dec. 2006, pp. 1293-1296 [44] K. H. Cheng, C. H. Weil and Y. W. Chen, “Design of low power content addressable memory cell,” in Proc. IEEE MWSCAS, Dec. 2003, pp. 1447-1450. [45] C. Mead and L. Conway, Introduction to VLSI systems. Reading, MA: Addison-Wesley, 1980. [46] J. S. Wang, H. Y. Li, C. C. Chen, and C. Yeh, “An AND type match-line scheme for energy efficient content addressable memories,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2005, pp. 464-465. [47] G. Kasai, Y. Takarabe, K. Furumi and M. Yoneda, “200MHz/200MSPS 3.2W at 1.5V Vdd, 9.4Mbits ternary CAM with new charge injection match detect circuits and bank selection scheme,” in Proc. IEEE Cust. Int. Circuits Conf, Sept. 2003, pp 387-390. [48] I. Arsovski, T. Chandler and A. Sheikholeslami, “A ternary content-addressable memory (TCAM) based on 4T static storage and including a current-race sensing scheme,” IEEE J. Solid-State Circuits, vol. 38, pp. 155-158, Jan. 2003 [49] C. A. Zukowski and S. Y. Wang, “Use of selective precharge for low-power on the match lines of content-addressable memories,” in Proc. Int. Symp. Memory Tech. Design & Test, Aug. 1997, pp. 64-68 [50] K. Pagiamtzis and A. Sheikholeslami, “A low-power content-addressable memory (CAM) using pipelined hierarchical search scheme,” IEEE J. Solid-State Circuits, vol. 39, pp. 1512-1519, Sept. 2004 [51] I. Arsovski and A. Sheikholeslami, “A current-saving match-line sensing scheme for content-addressable memories,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2003, pp. 304-494 [52] I. Arsovski and A. Sheikholeslami, “A mismatch-dependent power allocation technique for match-line sensing in content-addressable memories,” IEEE J. Solid-State Circuits, vol. 38, pp. 1958-1966, Nov. 2003 [53] Q. Chen, H. Mahmoodi, S. Bhunia, and K. Roy, “Modeling and testing of SRAM for new failure mechanisms due to process variations in nanoscale cmos,” in Proc. IEEE VLSI Test Symp., May 2005, pp. 292 - 297. [54] K. Pagiamtzis and A. Sheikholeslami, “A low-power content-addressable memory (CAM) using pipelined hierarchical search scheme,” IEEE J. Solid-State Circuits, vol. 39, pp. 1512-1519, Sep. 2004. [55] H. Y. Li, C. C. Chen, J. S. Wang and C. Yeh, “An AND type match line scheme for high performance energy efficient content addressable memories,” IEEE Trans. Solid-State Circuits, vol. 41, pp. 1108-1119, May 2006. [56] J. S. Wang, C. C. Wang, and C. Yeh, “TCAM for IP-address lookup using tree-style AND-type match lines and segmented search lines,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp. 577-586. [57] R. J. Tsai, H. W. Ting, C. S. Lin, and B. D. Liu, “A CAM/WTA-based high speed and low power longest prefix matching circuit design,” in Proc. Asia-Paccific Conf. Circuits Syst., Dec. 2006, pp. 427-430. [58] R. J. Tsai, “Design of low-power content-adressable memory and its application in nerwork routers,” M.S. Thesis, National Cheng Kung University, Tainan, Taiwan, Jan 2007.
|