跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋倫彰
研究生(外文):Lun-Chang Sung
論文名稱:茄子種間雜交種不定芽發生
論文名稱(外文):Adventitious shoot regeneration of eggplant interspecific hybrid
指導教授:金石文
指導教授(外文):Shih-Wen Chin
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:農園生產系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:79
中文關鍵詞:茄子不定芽光強度TDZ細胞分裂素
外文關鍵詞:eggplantadventitious shootlight intensityTDZcytokinin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
茄子為世界重要蔬菜作物之一,且有益於人體健康,有許多關於透過組織培養誘導茄子植株再生的研究,研究指出運用不同植物賀爾蒙以及不同的茄子培植體(葉片、根段、子葉、胚軸或節間)可誘導植株再生,雖然如此,在不同光照強度下,以植物生長調節劑誘導茄子雜交種之植株再生的研究有限,因此在本實驗以不同的種類物生長調節劑,生長素Auxin (naphthaleneacetic acid, NAA)、 細胞分裂素Cytokinin (6-benzyladenine, BA)以及 Thidiazuron (TDZ)在不同光強度下,以誘導茄子雜交種葉片培植體之植株再生,以NAA或BA誘導其葉片再生之效果不顯著, 而TDZ對芽體再生之效果較NAA及BA佳,若以0.1 mg/L TDZ在正常光照強度(35μmol/m2/s)處理葉片培植體21天,平均每培植體有4.94 ± 1.84個芽體,另外一方面,以0.1 mg/L及0.25mg/L TDZ 處理葉片培植體(5 mm2)有較多的芽體數,每培植體平均分別有11.19 ± 2.54及12.30 ± 3.30個芽體,而葉片培植體(5 mm2)在低光條件(13 mol/m2/s)下處理0.1 mg/L TDZ有最多的芽體數,平均每個培植體有15.41±0.71個芽體數。本實驗以組織切片方法觀察芽體發育的形態,結果顯示其芽體為器官再生之不定芽,植株再生方面,先前在低光條件下以0.1 mg/L TDZ處理之葉片培植體繼代
II
到不含植物生長調節劑之MS培養基中,培養42天有明顯生長及發育的情形,而在高光及黑暗之環境條件下則否,另外雜交種上位葉培植體在低光條件下及TDZ 處理後,繼代於MS培養基中不定芽有最高的存活率,本實驗找出較適當光照條件以及TDZ濃度以誘導茄子雜交種葉片培植體之不定芽的發生,未來可以TDZ誘導其他茄子雜交種之植株再生。

Eggplant (Solanum melongena L.) is a vegetable and medicinal plant good for human health; furthermore, eggplant is an important crop all over the world. A number of studies report the regeneration of large number eggplants through tissue culture; for example, researchers would add hormone in the tissue culture media to induce the plant regeneration. Many reports were also indicated that using different explants of eggplant such as the leaves, roots, cotyledons, hypocotyls, and nodes, to induce plant regeneration. However, the studies which induce regeneration of eggplant interspecific hybridization varieties with various light intensity condition were limited. Consequently, in our experiment will use leaf explants of eggplant treating with artificial hormones, such as Auxin (naphthaleneacetic acid, NAA), Cytokinin (6-benzyladenine, BA) and Thidiazuron (TDZ) and with different light intensity conditions to induce plant regeneration. In the study, the effect of leaf explants treated with NAA and BA to induce shoot regeneration eggplant interspecific hybridization varieties were not significantly. On the other hands,
IV
TDZ have higher efficiency shoot regeneration rates than NAA and BA. The in vitro shoot were obtained in MS medium supplemented with 0.1 mg/L TDZ, having an average shoot number of 4.94 ± 1.84 per leaf explants (not fix size) in normal light intensity (35μmol/m2/s) for 21 days; on the other hand, the leaf explants (5 mm2) cultured in MS medium supplemented with 0.1 mg/L or 0.25 mg/L TDZ which in vitro shoot number was more leaf explants than that none fixed size, having average 11.19 ± 2.54 and 12.30 ± 3.30 per explants, respectively. The best in vitro shoot induction was achieved on MS medium supplemented with 0.1 mg/L TDZ, with an average of 15.41±0.71 per leaf explants (0.5mm2) in low light intensity (13 mol/m2/s). In our experiment, histology analyzing indicated that the in vitro shoot was through the organogenesis adventitious shoot. Finally, the adventitious bud inducing from the leaf explants treated with 0.1 mg/L TDZ in low light intensity would be growing and development after subculture to MS medium with hormone free in the normal light intensity condition for 42days. Furthermore, the upper leaf explants have highest survival rates after subculture to the MS medium for 42 days. On the other hand, the adventitious shoot inducing from the leaf explants all of position wouldn’t be growing and development after subculture to the MS medium without any plant growth regulator for 42 days; moreover, that have lowest survival rate. We were fined the optimal light intensity and concentration of artificial hormones, TDZ, to induce leaf explants of eggplant regeneration. The future we can try to use TDZ to induce regeneration of other eggplant interspecific hybridization varieties in the future.

目錄
摘 要 .............................................................................................................. I
Abstract ......................................................................................................... III
誌謝 ............................................................................................................... V
目錄 ............................................................................................................. VII
圖表目錄 ...................................................................................................... IX
1 前言 ......................................................................................................... 1
2 前人研究 ................................................................................................. 2
2.1 茄子簡介 ................................................................................................. 2
2.2 組織培養之利用 ..................................................................................... 2
2.3 型態發生 ................................................................................................. 3
2.4 誘導因子 ................................................................................................. 4
2.4.1 基因型 ....................................................................................... 5
2.4.2 培植體 ....................................................................................... 5
2.4.3 植物生長調節劑 ........................................................................ 6
2.4.3.1 TDZ誘導植株再生 ....................................................... 6
2.4.4 其他影響因子 ............................................................................ 8
2.4.4.1 培植體部位及方向 ....................................................... 8
2.4.4.2 光照 ............................................................................... 8
2.4.4.3 營養元素及碳源 ........................................................... 9
2.4.4.4 多胺與體胚 ................................................................... 9
2.5 茄子的型態發生 ................................................................................... 10
3 材料方法 ............................................................................................... 13
3.1 植物材料 ............................................................................................... 13
VIII
3.2 NAA、BA處理對茄子雜交種‘W10 × T (D)’型態發生之影響 ....... 13
3.3 TDZ誘導茄子雜交種‘W10 × T (D)’不定芽再生 .............................. 13
3.4 TDZ處理14天之葉片培植體繼代於BA培養基 ............................ 13
3.5 葉片培植體對芽體發生之影響 ........................................................... 14
3.6 葉片培植體以不同光度及TDZ處理對芽體發生之影響 ................. 14
3.7 石蠟切片 ............................................................................................... 14
3.8 不定芽及不定根之生長 ....................................................................... 15
3.9 數據分析 ............................................................................................... 15
4 結果討論 ............................................................................................... 16
4.1 NAA、BA處理對茄子雜交種‘W10 × T (D)’型態發生之影響 ....... 16
4.2 TDZ誘導茄子雜交種‘W10 × T (D)’不定芽再生 .............................. 17
4.3 TDZ處理14天之葉片培植體繼代於BA培養基 ............................ 18
4.4 葉片培植體對芽體發生之影響 ........................................................... 19
4.5 葉片培植體以不同光度及TDZ處理對芽體發生之影響 ................. 21
4.6 組織切片 ............................................................................................... 23
4.7 不定芽及不定根之生長 ....................................................................... 24
5 結論 ....................................................................................................... 26
6 參考文獻 ............................................................................................... 65
IX
圖表目錄
圖 1. 不含植物生長調節劑之MS培養基處理茄子種間雜種‘W10 × T (D)’根段、節間及葉片培植體第0天。 ................................................. 27
圖 2. 不同濃度 NAA處理茄子種間雜種‘W10 × T (D)’根段、節間及葉片培植體35天,較低濃度 NAA 處理下有不定根發生。 ................ 28
圖 3. 不同濃度 BA處理茄子種間雜種‘W10 × T (D)’根段及節間培植體35天,並沒有芽體之器官發生。 ..................................................... 30
圖 4. 不同濃度BA處理茄子種間雜種‘W10 × T (D)’葉片培植體35天,切口稍有緊實的癒傷組織。 .............................................................. 31
圖 5. 以不同植物生長調節劑處理茄子種間雜種‘W10 × T (D)’根、節間及葉片培植體40天,NAA處理其培植體有褐化情形,BA處理有些許不定芽發生。 ..................................................................................... 32
圖 6. 0.5 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’的節間及葉片培植體。 ............................................................................................................ 33
圖 7. 不同濃度TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體。 .... 34
圖 8. 以0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體,有芽體發生。 ......................................................................................... 35
圖 9. 不同TDZ濃度處理茄子種間雜種‘W10 × T (D)’葉片培植體第21及42天,對照組葉片有不定根的發生,不同TDZ濃度處理下葉片有芽體再生。 ......................................................................................... 36
圖 10. 以0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體14天候,繼代至不同濃度BA培養基處理30天,隨著BA之處理濃度葉片培植體有不同程度之型態發生。 .............................................. 37
圖 11. 不同濃度TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體。 .. 39
圖 12. 不同濃度TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體第28天,隨TDZ濃度不同其芽體發生有不同之情況。 ......................... 40
圖 13. 在不同光照度下以0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’上位葉片培植體(size = 0.5 mm2)。 ................................................... 41
圖 14. 在不同光照度下以固定濃度0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’中位葉片培植體(size = 0.5 mm2)。 ............................ 42
圖 15. 在不同光照度下以固定濃度0.1 mg/L TDZ處理茄子種間雜種
X
‘W10 × T (D)’下位葉片培植體(size = 0.5 mm2)。 ............................ 43
圖 16. 在不同光照度下以固定濃度0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’上位葉片培植體(size = 0.25 mm2)。 .......................... 44
圖 17. 在不同光照度下以固定濃度0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’中位葉片培植體(size = 0.25 mm2)。 .......................... 45
圖 18. 在不同光照度下以固定濃度0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’下位葉片培植體(size = 0.25 mm2)。 .......................... 46
圖 19. 不同光照度下以0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’大葉片培植體,隨處理時間芽體生長之情形。 .................................. 47
圖 20. 在不同光照度下以0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體,其芽體再生情形。 ...................................................... 49
圖 21.以0.1 mg/L TDZ 處理茄子種間雜種‘W10 × T (D)’葉片培植體(大)14天。 ......................................................................................... 51
圖 22. 以TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體(小) 21天。 ............................................................................................................ 52
圖 23. 在正常光照條件下,以0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’大葉片培植體之組織切片圖。 ................................................... 54
圖 24. 在不同光照環境下以0.1mg/L TDZ處理茄子種間雜種‘W10 × T (D)’大葉片培植體35天候繼代至不含植物生長調節劑MS培養基及一般光照環境中培養42天,不定芽生長之情形。 ......................... 55
圖 25. 在不同光照環境下以0.1mg/L TDZ處理茄子種間雜種‘W10 × T (D)’大葉片培植體35天候繼代至不含植物生長調節劑MS培養基及一般光照環境中培養60天,不定根生長之情形。 ......................... 56
表 1. 以不同濃度TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體之變方分析。 ............................................................................................. 57
表 2. 以不同濃度TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體第21天及42天芽體發生率及芽數之結果。 ............................................ 58
表 3. 以0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體14天後繼代至不同濃度之BA培養基中觀察其芽數變化。 ................... 59
表 4. 以不同濃度TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體第14、21天及28天培植體之芽體形成率。 ....................................... 60
XI
表 5. 以不同濃度TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體第14、21天及28天芽體發生數之結果。 ................................................... 61
表 6. 以0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體第35天,不同因子對芽數影響之變方分析。 .......................................... 62
表 7. 以0.1 mg/L TDZ處理茄子種間雜種‘W10 × T (D)’葉片培植體,不同影響因子下芽數及癒傷組織之影響情形。 .................................. 63
表 8. 茄子種間雜種‘W10 × T (D)’大葉片培植體在不同光照環境下處理後繼代至一般光照之MS培養基中培養42天。 ............................. 64

蔡淑華 (1992) 植物組織切片技術綱要。初版。茂昌圖書有限公司。台匇。72頁。
魏毓真 (2010) 茄子及萬桃花之種間雜交。國立屏東科技大學農園生產系碩士論文。
Afele, J. C., Y. Tabei, T. Yamada, T. Momiyama, F. Takaiwa, T. Kayano, S. Nishimura and T. Nishio (1996) Identification of mRNAs differentially expressed between embryogenic and non-embryogenic cultivars of eggplant during somatic embryogenesis. Jpn. Agric. Res. Quart. 30:175-179.
Aina, O., K. Quesenberry and M. Gallo (2012) Thidiazuron-induced tissue culture regeneration from quartered-seed explants of Arachis Paraguariensis. Crop Sci. 52: 1076-1083.
Akasaka, Y., H. Daimon and M. Mii (2000) Improved plant regeneration from cultured leaf segments in peanut (Arachis hypogaea L.) by limited exposure to thidiazuron. Plant Sci. 156: 169-175.
Ali, M., H. Okubo and K. Fujieda (1991) In vitro multiplication of intra- and interspecific Solanum hybrids through somatic embryogenesis and adventitious organogenesis. J. Japan. Soc. Hort. Sci. 60: 601-612.
Alicchio, R., E. Del Grosso and E. Boschieri (1982) Tissue culture and plant regeneration from different explants in six cultivars of Solarnum melongena. Experientia 38: 449-50.
Ammirato, P. V. (1983) The regulation of somatic embryo development in plant cell cultures: suspension culture techniques and hormone requirements. Biotechnology 1:68-74.
Aribaud, M., M. Carré, and J. Martin-Tanguy (1994) Polyamine metabolism
66
and in vitro cell multiplication and differentiation in leaf explants of Chrysanthemum morifolium Ramat. Plant Growth Regul. 15: 143-155.
Armstrong, C. L. and C. E. Green (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207-214.
Bairu, M. W., O. Novák, K. Doležal and J. Staden (2011) Changes in endogenous cytokinin profiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regul. 63: 105-114.
Bajaj, S. and M. V. Rajam (1996) Polyamine accumulation and near loss of morphogenesis in long-term callus cultures of rice (Restoration of plant regeneration by manipulation of cellular polyamine levels). Plant Physiol. 112: 1343-1348.
Banerjee, A., S. Bandyopadhyay and S. S. Raychaudhuri (2012) In vitro regeneration of Hypericum perforatum L. using thidiazuron and analysis of genetic stability of regenerants. Indian J. Biotechnol. 11: 92-98.
Bell, L. M., R. N. Trigiano and B. V. Conger (1993) Relationship of abscisic acid to somatic embryogenesis in Dactylis glomerata. Environ. Exp. Bot. 33:495-499.
Boiteux, L. S. and J. M. Charchar (1996) Genetic resistance to root-knot nematode (Meloidogyne javanica) in eggplant (Solanum melongena). Plant Breed. 115: 198-200.
Bondt, A. D., K. Eggermont, I. Penninckx, I. Goderis and W. F. Broekaert (1996) Agrobacterium-mediated transformation of apple (Malus × domestica Borkh.): an assessment of factors affecting regeneration of
67
transgenic plants. Plant Cell Rep. 15: 549-554.
Carman, J. G. (1990) Embryogenic cells in plant tissue cultures: occurrence and behaviour. In Vitro Cell. Dev. Biol. 26: 746-753.
Chen, J. T. and W. C. Chang (2006) Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biol. Plant. 50: 169-173.
Chi, G. L., W. S. Lin, J. E. E. Lee and E. C. Pua (1994) Role of polyamines on de novo shoot morphogenesis from cotyledons of Brassica campestris ssp. pekinensis (Lour.) Olsson in vitro. Plant Cell Rep. 13: 323-329.
Chory, J., D. Reinecke, S. Sim, T. Washburn and M. Brenner (1994) A Role for Cytokinins in De-Etiolation in Arabidopsis (det Mutants Have an Altered Response to Cytokinins). Plant Physiol. 104: 339-347.
Clain, C., D. Da Silva, I. Fock, S. Vaniet, A. Carmeille, C. Gousset, D. Sihachakr, J. Luisetti, H. Kodja and P. Besse (2004) RAPD genetic homogeneity and high levels of bacterial wilt tolerance in Solanum torvum Sw. (Solanaceae) accessions from Reunion Island. Plant Sci. 166: 1533-1540.
Collonnier, C., I. Fock, I. Mariska, A. Servaes, F. Vedel, S. Siljak-Yakovlev, V. Souvannavong and D. Sihachakr (2003) GISH confirmation of somatic hybrids between Solanum melongena and S. torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiol. Biochem. 41: 459-470.
Collonnier, C., I. Fock, V. Kashyap, G. L. Rotino, M. C. Daunay, Y. Lian, I. K. Mariska, M. V. Rajam, A. Servaes, G. Ducreux and D. Sihachakr (2001) Applications of biotechnology in eggplant. Plant Cell Tissue Organ Cult. 65: 91-107.
68
Da Câmara Machado, A., M. Puschmann, H. Puhringer, R. Kremen, H. Katinger and M. L. da Câmara Machado (1995) Somatic embryogenesis of Prunus subhirtella autumno rosa and regeneration of transgenic plants after Agrobacterium-mediated transformation. Plant Cell Rep. 14: 335-340
Davies, M. E. and M. M. Dale (1979) Factors affecting in vitro shoot regeneration on leaf discs of Solanum laciniatum AIT. Z Pflanzenphysiol 92: 51-60.
De Jong, A. J., E. D. Schmidt and S. C. de Vries (1993) Early events in higher-plant embryogenesis. Plant Mol. Biol. 22:367-377.
Debnath, S. C. (2005) A two-step procedure for adventitious shoot regeneration from in vitro-derived lingonberry leaves: shoot induction with TDZ and shoot elongation using zeatin. HortScience 40: 189-192.
Deore, A. C. and T. S. Johnson (2008) High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant. Plant Biotechnol Rep 2: 7-11.
Dhaliwal, H. S., N. S. Ramesar-Fortner, E. C. Yeung and T. A. Thorpe (2003) Competence, determination, and meristemoid plasticity in tobacco organogenesis in vitro. Can. J. Bot. 81: 611-621.
Dong, N., B. Montanez, R. A. Creelman and K. Cornish (2006) Low light and low ammonium are key factors for guayule leaf tissue shoot organogenesis and transformation. Plant Cell Rep 25: 26-34.
El Maataoui, M., H. Espagnac, B. Jaber and A. Alonso-Lopez (1998) Regulation of in vitro callogenesis and organogenesis from Albizzia root explants by carbohydrate source modifications. J. Plant Physiol. 152: 494-501.
69
Elaleem, K. G. A., R. S. Modawi and M. M. Khalafalla (2009) Effect of plant growth regulators on callus induction and plant regeneration in tuber segment culture of potato (Solanum tuberosum L.) cultivar Diamant. Afr. J. Biotechnol. 8: 2529-2534.
Fari, M., I. Nagy, M. Csanyi, J. Mityko and A. Andrasfalvy (1995) Agrobacterium mediated genetic transformation and plant regeneration via organogenesis and somatic embryogenesis from cotyledon leaves in eggplant (Solanum melongena L. cv. ‘Kecskemeti lila’). Plant Cell Rep. 15: 82-86.
Feher A, T. Pasternak, K. Otvos, P. Miskolczi and D. Dudits (2002) Induction of embryogenic competence in somatic plant cells: a review. Biologia 57:5-12.
Fobert, P. R. and D. T. Webb (1988) Effects of polyamines, polyamine precursors, and polyamine biosynthetic inhibitors on somatic embryogenesis from eggplant (Solanum melongena) cotyledons. Can. J. Bot. 66: 1734-1742.
Franklin, G. and G. L. Sita (2003) Agrobacterium tumefaciens-mediated transformation of eggplant (Solanum melongena L.) using root explants. Plant Cell Rep. 21: 549-554.
Franklin, G., C. J. Sheeba and G. L. Sita (2004) Regeneration of eggplant (Solanum melongena L.) from root explants. In Vitro Cell. Dev. Biol. Plant 40: 188-191.
Ghimire, B. K., C. Y. Yu and I. M. Chung (2011) Direct shoot organogenesis and assessment of genetic stability in regenerants of Solanum aculeatissimum Jacq. Plant Cell Tissue Organ Cult. 108: 455-464.
Gisbert, C., J. Prohens and F. Nuez (2006) Efficient regeneration in two potential new crops for subtropical climates, the scarlet (Solanum
70
aethiopicum) and gboma (S. macrocarpon) eggplants. N. Z. J. Crop Hortic. Sci. 34: 55-62.
Gleddie, S., W. A. Keller and G. Setterfield (1983) Somatic embryogenesis and plant regeneration from leaf explants and cell suspensions of Solanum melongena (eggplant). Can. J. Bot. 61: 656-666.
Hamama, L., L. Voisine, D. Peltier and J. Boccon-Gibod (2011) Shoot regeneration and genetic transformation by Agrobacterium tumefaciens of Hydrangea macrophylla Ser. leaf discs. Sci. Hortic. 127: 378-387.
Hare, P. D. and J. van Staden (1994) Inhibitory effect of thidiazuron on the activity of cytokinin oxidase isolated from soybean callus. Plant Cell Physiol. 35: 1121-1125.
Hassanein, A. and N. Dorion (2005) Efficient plant regeneration system from leaf discs of zonal (Pelargonium × hortorum) and two scented (P. capitatum and P. graveolens) geraniums. Plant Cell Tissue Organ Cult. 83: 231-240.
Hitomi, A., H. Amagai and H. Ezura (1998) The influence of auxin type on the array of somaclonal variants generated from somatic embryogenesis of eggplant, Solanum melongena L.. Plant Breed. 117: 379-383.
Hu, J. B., J. Liu, H. B. Yan and C. H. Xie (2005) Histological observations of morphogenesis in petiole derived callus of Amorphophallus rivieri Durieu in vitro. Plant Cell Rep. 24: 642-648.
Huetteman, C. A. and J. E. Preece (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult. 33: 105-119.
Hutchinson, M. J., S. J. Murch and P. K. Saxena (1996) Morphoregulatory
71
role of thidiazuron: Evidence of the involvement of endogenous auxin in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium × hortorum Bailey). J. Plant Physiol. 149: 573-579.
Jarl, C. I., E. M. Rietveld and J. M. D. Haas (1999) Transfer of fungal tolerance through interspecific somatic hybridisation between Solanum melongena and S. torvum. Plant Cell Rep. 18: 791-796.
Jimenez V. M. (2001) Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev. Bras. Fisiol. Veg. 13:196-223.
Kantharajah, A. S. and P. G. Golegaonkar (2004) Somatic embryogenesis in eggplant. Sci. Hortic. 99: 107-117.
Karam, N. S. and M. Al-Majathoub (2000) Direct shoot regeneration and microtuberization in wild Cyclamen persicum Mill using seedling tissue. Sci. Hortic. 86: 235-246.
Kashyap, V., S. V. Kumar, C. Collonnier, F. Fusari, R. Haicour, G. L. Rotino, D. Sihachakr and M. V. Rajam (2003) Biotechnology of eggplant. Sci. Hortic. 97: 1-25.
Kathal, R., S. P. Bhatnagar and S. S. Bhojwani (1988) Regeneration of plants from leaf explants of Cucumis melo cv. Pusa Sharbati. Plant Cell Rep. 7: 449-451.
Kintzios, S., E. Stavropoulou and S. Skamneli (2004) Accumulation of selected macronutrients and carbohydrates in melon tissue cultures: association with pathways of in vitro dedifferentiation and differentiation (organogenesis, somatic embryogenesis). Plant Sci J 167: 655-664.
Komamine, A., R. Kawahara, M. Matsumoto, S. Sunabori, T. Toya, A. Fujiwara, M. Tsukahara, J. Smith, M. Ito, H. Fukuda, K. Nomura and T.
72
Fujimura (1992) Mechanisms of somatic embryogenesis in cell cultures: Physiology, biochemistry, and molecular biology. In Vitro Cell. Dev. Biol. Plant 28: 11-14.
Kumar, N. and M. P. Reddy (2012) Thidiazuron (TDZ) induced plant regeneration from cotyledonary petiole explants of elite genotypes of Jatropha curcas: A candidate biodiesel plant. Ind Crops Prod 39: 62-68.
Kumchai, J., Y. C. Wei, C. Y. Lee, F. C. Chen and S. W. Chin (2013) Production of interspecific hybrids betewwn commercial cultivears of the eggplant (Solanum melongena L.) and its wild relative S. torvum. Genet. Mol. Res. 12: 755-764.
Larkin P. J. and W. R. Scowcroft (1981) Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197-214.
Lata, H., S. Chandra, I. Khan and M. A. Elsohly (2008) Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L. In Vitro Cell. Dev. Biol., Plant 45: 12-19.
Lata, H., S. Chandra, Y. H. Wang, V. Raman and I. A. Khan (2013) TDZ-induced high frequency plant regeneration through direct shoot organogenesis in Stevia rebaudiana Bertoni: an important medicinal plant and a natural sweetener. Am J Plant Sci 4: 117-128.
Li, Z., R. L. Jarret, R. N. Pittman and J. W. Demski (1994) Shoot organogenesis from cultured seed explants of peanut (Arachis hypogaea L.) using thidiazuron. In Vitro Cell. Dev. Biol. Plant 30: 187-191.
Li, Z., R. L. Jarret, R. N. Pittman, K. B. Dunbar and J. W. Demski (1993) Efficient plant regeneration from protoplasts of Arachis
73
paraguariensis Chod. et Hassl. using a nurse culture method. Plant Cell Tissue Organ Cult. 34: 83-90.
Loberant, B. and A. Altman (2010) Micropropagation of Plants. In: Flickinger, M. S. (eds.) Encyclopedia of industrial biotechnology: Bioprocess, bioseparation, and cell technology. p. 1-17. John Wiley &; Sons. Hoboken,NJ.
Magioli, C. and E. Mansur (2005) Eggplant (Solanum melongena L.): tissue culture, genetic transformation and use as an alternative model plant. Acta bot. bras. 19: 139-148.
Magioli, C., A. P. M. Rocha, D. E. Oliveira and E. Mansur (1998) Efficient shoot organogenesis of eggplant (Solanum melongena L.) induced by thidiazuron. Plant Cell Rep. 17: 661-663.
Magioli, C., R. M. Barrôco, C. a. B. Rocha, L. D. D. Santiago-Fernandes, E. Mansur, G. Engler, M. Margis-Pinheiro and G. Sachetto-Martins (2001) Somatic embryo formation in Arabidopsis and eggplant is associated with expression of a glycine-rich protein gene (Atgrp-5). Plant Sci J 161: 559-567.
Mallaya, N. P. and G. A. Ravishankar (2012) In vitro propagation and genetic fidelity study of plant regenerated from inverted hypocotyl explants of eggplant (Solanum melongena L.) cv. Arka Shirish. 3 Biotech 3: 45-52.
Mariani, P., (1992) Eggplant somatic embryogenesis combined with synthetic seed technology. Capsicum Newslett. (special issue) 289-294.
Martin, K. P., D. Joseph, J. Madasser and V. J. Philip (2003) Direct shoot regeneration from lamina explants of two commercial cut flower cultivars of Anthurium andraeanum Hort. In Vitro Cell. Dev. Biol. - Plant 39: 500-504.
74
Matsuoka, H. (1983) Factors affecting embryoid formation in hypocotyl callus of Solanum melongena L. Jpn. J. Breed. 33: 303–309.
Mithila, J., J. C. Hall, J. M. Victor and P. K. Saxena (2003) Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl). Plant Cell Rep. 21: 408-414.
Mok, M. C., D. W. S. Mok, D. J. Armstrong, K. Shudo,Y. Isogai and T. Okamoto (1982) Cytokinin activity of N-phenyl-N-1, 2,3-thiadiazol-5-ylurea (thidiazuron). Phytochemistry 21: 1509-1511.
Mok, M. C., D. W. S. Mok, J. E. Turner and C.V. Mujer (1987) Biological and biochemical effects of cytokinin-active phenylurea derivatives in tissue culture systems. HortScience 22:1194-1197.
Murashige, T., and F. Skoog. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.
Namasivayam, P. (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult. 90: 1-8.
Nhut, D. T., B. V. Le, S. Fukai, M. Tanaka and K. T. T. Van (2001) Effects of activated charcoal, explant size, explant position and sucrose concentration on plant and shoot regeneration of Lilium longiflorum via young stem culture. Plant Growth Regul. 33: 59-65.
Nishiwaki, M., K. Fujino, Y. Koda, K. Masuda and Y. Kikuta (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756-759.
Orozco-Cardenas, M. and C. A. Ryan (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. 96: 6553-6557.
75
Papafotiou, M. and A. N. Martini (2009) Effect of position and orientation of leaflet explants with respect to plant growth regulators on micropropagation of Zamioculcas zamiifolia Engl. (ZZ). Sci. Hortic. 120: 115-120.
Parveen, S. and A. Shahzad (2010) TDZ – induced high frequency shoot regeneration in Cassia sophera Linn. via cotyledonary node explants. Physiol Mol Biol Plants 16: 201-206.
Peddaboina, V., C. Thamidala and S. Karampuri (2006) In vitro shoot multiplication and plant regeneration in four Capsicum species using thidiazuron. Sci. Hortic. 107: 117-122.
Pedroso, M. C., N. Primikirios, K. A. Roubelakis-Angelakis, and M. S. Pais (1997) Free and conjugated polyamines in embryogenic and non-embryogenic leaf regions of camellia leaves before and during direct somatic embryogenesis. Physiol. Plant. 101: 213-219.
Pesce, P. G. and E. Rugini (2005) Influence of plant growth regulators, carbon sources and iron on the cyclic secondary somatic embryogenesis and plant regeneration of transgenic cherry rootstock ‘Colt’ (Prunus avium × P. pseudocerasus). Plant Cell Tissue Organ Cult. 79: 223-232.
Rahman, M., M. Asaduzzaman, N. Nahar and M. A. Bari (2006) Efficient plant regeneration from cotyledon and midrib derived callus in eggplant (Solanum melongena L.). J. bio-sci. 14: 31-38.
Rajam, M. V. (1997) Polyamines. In MNV Prasad, ed, Plant Ecophysiology. John Wiley &; Sons, New York, pp 343-374.
Ramarosandratana, A. V. and J. van Staden (2003) Tissue position, explant orientation and naphthaleneacetic acid (NAA) affect initiation of somatic embryos and callus proliferation in Norway spruce (Picea
76
abies). Plant Cell Tissue Organ Cult. 74: 249-255.
Ray, B. P., L. Hassan and S. K. Sarker (2010) Plant regeneration from seedling derived explants through callus of eggplant (Solanum melongena L). The Agriculturists 8: 98-107.
Reuveni, M. and D. Evenor (2007) On the effect of light on shoot regeneration in petunia. Plant Cell Tissue Organ Cult. 89: 49-54.
Rhodes, C. A., C. E. Green and R. L. Phillips (1986) Factors affecting tissue culture initiation from maize tassels. Plant Sci. 46:225-232.
Rotino, G. L., A. Falavigna, F. Fiume, G. Nervo and F. Restaino (1987) Possibility of eggplant (Solanum melongena L.) improvement through in vitro techniques. Genet. Agraria 41: 314-315.
Sagare, A. P., Y. L. Lee, T. C. Lin, C. C. Chen and H. S. Tsay (2000) Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae) – a medicinal plant. Plant Sci. 160:139-147.
Saito, T. and S. Nishimura (1994) Improved culture conditions for somatic embryogenesis using an aseptic ventilative filter in eggplant (Solanum melongena L.). Plant Sci. 102: 205-211.
Sarker, R. H., S. Yesmin and M. I. Hoque (2006) Multiple shoot formation in eggplant (Solanum melongena L.). Plant Tissue Cult. Biotechnol. 16: 53-61.
Schwann, T. (1847) Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants. Printed for the Sydenham Society by [C. and J. Adlard Printers]. London. 268pp.
Scoccianti, V., E. Sgarbi, D. Fraternale and S. Biondi (2000) Organogenesis from Solanum melongena L. (eggplant) cotyledon explants is
77
associated with hormone-modulated enhancement of polyamine biosynthesis and conjugation. Protoplasma 211: 51-63.
Sharma, P. and M. V. Rajam (1995a) Genotype, explant and position effects on organogenesis and somatic embryogenesis in eggplant (Solanum melongena L.). J. Exp. Bot. 46: 135-141.
Sharma, P. and M. V. Rajam (1995b) Spatial and temporal changes in endogenous polyamine levels associated with somatic embryogenesis from different hypocotyl segments of eggplant (Solanum melongena L.). J. Plant Physiol. 146: 658-664.
Shirin, F., M. Hossain, M. F. Kabir, M. Roy and S. R. Sarker (2007) Callus induction and plant regeneration from internodal and leaf explants of four potato (Solanum tuberosum L.) cultivars. World J. Agric. Sci. 3: 1-6.
Shivaraj, G. and S. Rao (2011) Rapid and efficient plant regeneration of eggplant (Solanum melongena L.) from cotyledonary leaf explant. Indian J. Biotechnol. 10: 125-129.
Siegień, I., A. Adamczuk and K. Wróblewska (2012) Light affects in vitro organogenesis of Linum usitatissimum L. and its cyanogenic potential. Acta Physiol. Plant. 35: 781-789.
Stoskopf, N. C., D. T. Tomes and B. R. Christie (1993) Plant breeding. Theory and practice. Westview Press. Boulder, Colorado. 531pp.
Swarup, V. (1995) Genetic resources and breeding of aubergine (Solanum melongena L.). Acta Hort. 412: 71-79.
Tanaka, H., H. Ueda, K. Mitsukuri, T. Tezuka, S. Shiozaki and M. Oda (2013) L-2-aminooxy-3-phenylpropionic acid (AOPP) promoting shoot formation from hypocotyl explants of eggplant. Res. J. Biotechnol. 8: 4-8.
78
Tarré, E., C. Magioli, M. Margis-Pinheiro, G. Sachetto-Martins, E. Mansur and E. L. D. R. Santiago-Fernandes (2004) In vitro somatic embryogenesis and adventitious root initiation have a common origin in eggplant (Solanum melongena L.). Revista Brasil. Bot. 27: 79-84.
Tiburcio, A. F., R. Kaur-Sawhney and A. W. Galston (1988) Polyamine biosynthesis during vegetative and floral bud differentiation in thin layer tobacco tissue cultures. Plant Cell Physiol. 29: 1241-1249.
Toonen, M. A. J. and S. C. de Vries (1996) Initiation of somatic embryos from single cells. p 173-190 In: T. L. Wang, A. Cuming (eds) Embryogenesis: the generation of a plant. BIOS Scientific Publishers, Oxford, UK.
Tsuro, M., M. Koda and M. Inoue (1999) Comparative effect of different types of cytokinin for shoot formation and plant regeneration in leaf-derived callus of lavender (Lavandula vera DC). Sci. Hortic. 81: 331-336.
Varshney, A., R. Sangapillai, M. S. Patil and T. S. Johnson (2011) Histological evidence of morphogenesis from various explants of Jatropha curcas L. Trees 25: 689-694.
Visser, C., J. A. Qureshi, R. Gill and P. K. Saxena (1992) Morphoregulatory role of thidiazuron: Substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol. 99: 1704-1707.
Williams, E. G. and G. Maheshwaran (1986) Somatic embryogenesis: factors influencing coordinate behaviour of cells as an embryogenic group. Ann. Bot. 57:443-462.
Yadav, J. S. and M. V. Rajam (1998) Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in eggplant.
79
Plant Physiol. 116: 617-625.
Yoshida, S., T. Mandel and C. Kuhlemeier (2011) Stem cell activation by light guides plant organogenesis. Genes Dev. 25: 1439-1450.
Zayova, E., R. Vassilevska–Ivanova, B. Kraptchev and D. Stoeva (2010) Somaclonal variations through indirect organogenesis in eggplant (Solanum melongena L.). BioDiCon 3: 1-5.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top