一、中文文獻
1.洪冠群,多重最小支持度關聯規則探勘演算法之醫療檢驗應用:以血液透析病患之住院預測為例,國立東華大學資訊工程學系碩士在職專班論文,2004。2.黃文璋,統計思維,中央研究院數學研究所數學傳播,第33卷第3期,2009,頁30-46。二、英文文獻
3.Agrawal, R. & Srikant, R., Fast Algorithms for Mining Association Rules, Proceedings of the 20th Very Large DataBases Conference(VLDB’94), Chili, Santiago, 1994.
4.Borgwardt, K. M., Kriegel, H. P. & Wackersreuther, P., Pattern Mining in Frequent Dynamic Subgraphs, Sixth International Conference on Data mining, 2006.
5.Chen, Y. L., Tang, K., Shen, R. J. & Hu, Y. H., Market basket analysis in a multiple store environment, Decision Support Systems 40, 2005, pp339-354.
6.Cheng, H., Yan, X., Han, J. & Hsu, C. W., Discriminative Frequent Pattern Analysis for Effective Classification, IEEE 23rd International Conference on Data Engineering, 2007.
7.Han, J., Pei, J. & Y. Yin, Mining frequent patterns without candidate generation, Proceedings 2000 ACM-SIGMOD International Conference on Management of Data (SIG-MOD’00), Dallas, TX, USA, 2000.
8.Hu, Y. H. & Chen, Y. L., Mining association rules with multiple minimum supports: a new minig algorithm and a support tuning mechanism, Decision Support Systems 42, 2006, pp. 1-24.
9.Huang, J. W., Dai, B. R. &Chen, M. S.,Twain: Two-end association miner whith precise frequent exhibition periods, ACM Transactions on Knowledge Discovery from Data, Data. 1, 2, Article 8, 2007.
10.IDC, The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things, 2014, Retrieved 2016/8/30 from http://www.emc.com/leadership/digital-universe/2014iview/index.htm
11.Isafiade, O., Bagula, A. & Berman, S., A Revised Frequent Pattern Model for Crime Situation Recognition Based on Floor-Ceil Quartile Function, Procedia Computer Science 55, 2015, pp. 251-560.
12.Jea, K. F. & Li, C. W., Discovering frequent itemsets over transactional data streams through an efficient and stable approximate approach, Expert Systems with Applications 36, 2009, pp.12323-12331.
13.Li, H. F. & Lee, S. Y., Approximate mining of maximal frequent itemset in data streams with different window models, Expert Systems with Applications 35, 2008, pp.781-789.
14.Li, C. W. & Jea, K. F., An adaptive approximation method to discover frequent itemsets over sliding-window-based data streams, Expert Systems with Applications 38, 2011, pp.13386-13404.
15.Liu, B., Hsu, W. & Ma, Y., Mining association rules with multiple minimum supports, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-99), San Diego, CA, USA, 1999.
16.Tang, K., Chen, Y. L. & Hu, H.W., Context based market basket analysis in a multiple store environment, Decision Support Systems 45, 2008, pp. 150-163.
17.Zhang, S., Zhang, J. & Jin, Z.,A decremental algorithm of frequent itemset maintenance for mining updated databases, Expert Systems with Applications 36, 2009, pp.10890-10895.