跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳彰榮
研究生(外文):Chang-Jung Wu
論文名稱:免熱敏電阻校正的Thermopile感應器演算法
論文名稱(外文):The Algorism of Thermopile Sensor without Thermistor Calibration
指導教授:江正雄江正雄引用關係
指導教授(外文):Jen-Shiun Chiang
學位類別:碩士
校院名稱:淡江大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:89
中文關鍵詞:熱敏電阻熱電堆溫度測量紅外線耳溫槍黑體冷接面熱接面
外文關鍵詞:ThermopileCold JunctionHot Junctionlack bodyTemperature measurementinfrared Ear-Thermometer
相關次數:
  • 被引用被引用:5
  • 點閱點閱:974
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
應用Thermopile 感應器所設計的溫度測量裝置,生產時都必須作好熱敏電阻及Thermopile感應零敏度的校正。免熱敏電阻校正的Thermopile 感應器演算法,用於改善舊有以Thermopile感應器為測量元件所製作的溫度量測裝置,在生產時所面對的複雜的校正問題。主要目的為提高測量準確度及大幅降低校正所需的時間,由原來需要5分鐘的校正時間,改善為4秒鐘完成校正。係應用Thermopile的Cold Junction與Hot Junction的溫度差異關係,對應Thermopile輸出的電壓曲線,分析其相關特性,確定曲線符合數學模式,可以建立一組聯立方程式,並解出相對應的兩組重要參數(熱敏電阻誤差及Thermopile感應零敏度)。達到不需要單獨針對熱敏電阻作個別校正的目的。
大多數以Thermopile Sensor 所設計的測量裝置,都以8-Bit MCU為運算處理單元,無浮點運算能力。解聯立方程式極為困難。為了解決這個問題,在本文中探討以一種8-Bit MCU可執行的循環運算流程,達到解聯立方程式的運算目的。這項運算流程同樣適用於部份微處理器在代數運算方面的應用。
Conventional thermopile thermometers must perform two calibration procedures for the thermistor tolerance and the thermopile sensitivity during the production. This project focuses on the calibration-free algorism for thermistor tolerance of thermopile sensor. It intends to simplify the complex calibration process of thermopile thermometers. The aim is to increase the measurement accuracy and reduce the calibration time. By analyzing the characteristic of the thermopile output voltage curve that is relevant to the temperature difference between the cold junction and hot junction, a mathematical model that fits the curve can be found. Therefore, we can form a simultaneous equation and thereby solve it to obtain two essential parameters: thermistor tolerance and thermopile sensitivity. As a result, there is no need to calibrate thermistor individually. By applying this algorism, the calibration time can be reduced from 5 minutes to 4 seconds.
Most of thermopile thermometers are implemented with 8-bit MCUs as the central processing unit. However, this type of MCU does not have the floating point unit to execute a complex mathematical calculation such as to solve simultaneous equations. To solve this issue, this project applies a particular calculation flowchart that can be used by an 8-bit MCU to solve simultaneous equations. This calculation flowchart is also suitable for other MCUs that need to solve complex mathematics.
誌 謝 I
中文摘要 II
英文摘要 III
目錄 V
圖目 VIII
表目 X
第一章: 緒論 1
1.1 研究背景 1
1.2 論文架構 4
第二章: 電器特性說明 5
2.1物理特性 5
2.2元件說明 8
2.3量測原理 12
2.4 負溫度係數(NTC)熱敏電阻的特性 15
第三章: 相關技術探討 17
3.1元件靈敏度 17
3.2誤差來源 18
3.3 Thermopile Sensor 的重要參數 20
3.4運算放大器的選擇 26
3.5 Thermo Noise 30
3.6導波管原理 33
3.7電路說明 34
3.8 參數計算 37
3.9參數校正 41
3.10 Lookup Table的應用 43
第四章:相關校正演算法說明 47
4.1含熱敏電阻校正演算法 47
4.2免熱敏電阻校正演算法 49
4.3免熱敏電阻校正演算法的數學推導 51
4.4 MCU對複雜計算的對策 54
4.5免熱敏電阻校正演算法流程圖 57
第五章:結果模擬及差異分析 58
5.1實際測量結果 58
5.2免熱敏電阻校正演算法模擬 61
5.3相關演算法的差異分析 63
第六章: 結論與未來展望 66
附錄(一):實驗測量數據 68
附錄 (1.1) 68
附錄 (1.2) 70
附錄 (1.3) 72
附錄(二):發明專利說明書 74
參考文獻 88
圖目
圖2.1 黑體熱輻射頻譜 5
圖2.2 Thermopile Sensor 感應示意圖 6
圖2.3 熱電堆元件電壓轉換原理 8
圖2.4 Thermopile Sensor 外觀圖 9
圖2.5 Thermopile Sensor 內部結構圖 10
圖2.6 Thermopile Sensor等效電路圖 12
圖2.7 Thermopile Sensor電壓輸出曲線 15
圖2.8 熱敏電阻阻值與溫度曲線 16
圖3.1 Thermopile Sensor不理想電壓輸出曲線 19
圖3.2 TPS333 Thermopile Sensor規格書 22
圖3.3 TS-118 Thermopile Sensor規格書 23
圖3.4 MAX4238/LTC1150 運算放大器規格書 29
圖3.5 Thermo Noise干擾示意圖 32
圖3.6 導波結構示意圖 34
圖3.7 Thermopile 電壓放大電路圖 35
圖3.8 Thermistor 電路架構圖 36
圖3.9 Thermopile 溫度計電路架構圖 37
圖4.1 Thermopile Sensor校正流程圖 48
圖4.2免Thermistor校正示意圖 50
圖4.3免Thermistor校正流程圖 57
表目
表3.1 Thermistor溫度vs.阻抗Lookup Table 43
表3.2 Thermopile輸出電壓Vir vs.溫度Lookup Table 46
表5.1實際測量結果 60
表5.2免熱敏電阻校正法模擬試算結果 62
表5.3各類型校正演算法比較表 65
[1] D.R. Mack, “The top 10 equations [electrical engineering],” Potentials, IEEE Vol.15, Issue 5, Dec. 1996-Jan. 1997, pp. 39 – 40.
[2] J.L. Pan, H.K. Choy, and C.G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE Transactions Electron Devices, Vol. 47, Issue 1, Jan. 2000, pp. 241 – 249.
[3] R. Muanghlua, S. Cheirsirikul, and S. Supadech, “The study of silicon thermopile,” TENCON 2000, Vol. 3, 24-27 Sept. 2000, pp.226 – 229.
[4] http://www.opto.com.tw/products/semi-technicalsupport2.asp?langtype=eng
[5] http://cms.hlplanar.de/data-live-planar/docs/pdf/Datasheets_eng/TS118-5eng.pdf
[6] H. Yamamoto, A. Shibata, K. Hajime, F. Takao, K. Sugisawa, Y.Niwatsukino, H. Shishiba, and S.I. Takeda, “The development of high sensitivity NTC thermistors” Applications of Ferroelectrics, ISAF ''94., Ninth IEEE International Symposium, Aug.7-10 1994, pp.735 – 738.
[7] A. Ikegami, H. Arima, H. Tosaki, Y. Matsuoka, A. Mitsuro, H. Minorikawa, Y. Asahino, “Thick-Film Thermistor and Its Applications,” IEEE Transactions, Components, Hybrids, and Manufacturing Technology, Vol. 3, Issue 4, Dec. 1980, pp.541 – 550.
[8] C. Menolfi and Qiuting Huang, “A CMOS instrumentation amplifier with 600 nV offset, 8.5 nV/√(Hz) noise and 150 dB CMRR,” IEEE Custom Integrated Circuits Conference, May.11-14 1998, pp.369 – 372.
[9] G.A. Bennett and S.D. Briles, “Calibration procedure developed for IR surface -temperature measurements,” IEEE Transactions, Components, Hybrids, and Manufacturing Technology, Vol.12, Issue 4, Dec.1989, pp. 690 – 695.
[10] http://optoelectronics.perkinelmer.com/catalog/Product.aspx?ProductID=TPS333
[11] http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3407 (MAX4238)
[12] http://www.linear.com/pc/productDetail.do?navId=H0,C1,C1154,C1009,C1100,P1310
[13] A.L. Coban and P.E. Allen, “A 1.75 V rail-to-rail CMOS op amp” IEEE 1994 International Symposium, Circuits and Systems, Vol.5, May.30- Jun. 2 1994, pp.497 – 500.
[14] T. Toriyama, M. Yajima, and S. Sugiyama, “Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile,” Micro Electro Mechanical Systems,(MEMS 2001 ), The 14th IEEE International Conference, Jan. 2001, pp.562 – 565.
[15] P.J. Hurst and R.A. Levinson, “Delta-sigma A/D convertor with reduced sensitivity to op amp noise and gain” IEEE International Symposium, Circuits and Systems, vol.1, May 1989, pp. 254 – 257.
[16] M. Ishihara, T. Arai, M. Kikuchi, H. Nakano, and M. Obara, “Temperature measurements by thermal radiation during ArF excimer laser ablation with gelatin gel,” Engineering in Medicine and Biology Society, 20th Annual International Conference of the IEEE, Vol.4, 29 Oct.-1 Nov. 1998, pp.1873 – 1874.
[17] J.W. Bruce, “Meeting the analog world challenge. Nyquist-rate analog-to-digital converter architectures,” IEEE Potentials, Vol.17, Issue 5, Dec. 1998-Jan. 1999, pp. 36 – 39.
[18] A.K. Betts, J.T. Taylor, and D.G. Haigh, “Investigation of a switched-capacitor integrator-pair with low-sensitivity to non-ideal op-amp effects,” IEE 1988 Saraga Colloquium Electronic Filters, May 1988, pp. 301 – 311.
[19] http://www.ni.com/pdf/products/us/20044546301101dlr.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top